Advances in m6A Methylation Regulating Mammalian Gamete Maturation and Embryo Development
ZHANG Meng-Ya, YAN Ye-Lian, WANG Xin, LIU Qiu-Chen, ZHANG Yun-Hai*, CAO Zu-Bing*
Anhui Provincial Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
Abstract:Gamete maturation and embryo development are key factors that determine mammalian reproduction. Gamete maturation and embryo development are regulated by a variety of epigenetic information. N6- methyladenine (m6A) specifically refers to the endogenous methylation modification on the sixth N atom of RNA adenine, which is the most abundant internal modification in mammalian mRNA and affects many aspects of RNA metabolism. m6A plays an important role in mammalian gamete maturation and embryo development. Abnormal modification of m6A impairs gametogenesis, sex hormone synthesis, fertility and early embryo development. This review focuses on the studies of m6A modification related enzymes and their regulation role in mammalian gamete maturation and early embryo development, which provides references for the further exploring the mechanism of m6A regulation of mammalian gamete maturation and embryo development.
[1] Abby E, Tourpin S, Ribeiro J, et al.2016. Implementation of meiosis prophase I programme requires a conserved reti‐ noid-independent stabilizer of meiotic transcripts[J]. Nature Communications, 7: 10324. [2] Adhikari S, Xiao W, Zhao YL, et al.2016. m6A: Signaling for mRNA splicing[J]. RNA Biology, 13(9): 756-759. [3] Bailey A S, Batista P J, Gold R S, et al.2017. The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline[J]. eLife, 6: e26116. [4] Baltz A G, Munschauer M, Schwanhausser B, et al.2012. The mRNA-bound proteome and its global occupancy pro‐ file on protein-coding transcripts[J]. Molecular Cell, 46(5): 674-690. [5] Bansal S K, Gupta N, Sankhwar S N, et al.2015. Differential genes expression between fertile and infertile spermato‐ zoa revealed by transcriptome analysis[J]. PLoS One, 10(5): e0127007. [6] Bartosovic M, Molares HC, Gregorova P, et al.2017. N6- methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3' end processing[J]. Nucleic Acids Research, 45(9): 11356-11370. [7] Bell J L, Wachter K, Muhleck B, et al.2013. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): Post-transcriptional drivers of cancer progression?[J]. Celluar and Molecular Life Sciences, 70(15): 2657-2675. [8] Besse F, Lopez De Quinto S, Marchand V, et al.2009. Dro- sophila PTB promotes formation of high-order RNP par‐ ticles and represses oskar translation[J]. Genes and De‐ velopment, 23(2): 195-207. [9] Bokar, Shambaugh R, Ludwiczak, et al.1994. Characteriza‐ tion and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex[J]. The Journal of Biological Chemistry, 269(26): 17697-17704. [10] Cai Z, Niu Y, Li H.2021. RNA N6-methyladenosine modifi‐ cation, spermatogenesis, and human male infertility[J]. Molecular Human Reproduction, 27(6): gaab020. [11] Cao Z, Zhang L, Hong R, et al.2021. METTL3-mediated m6A methylation negatively modulates autophagy to support porcine blastocyst developmentdouble dagger[J]. Biology of Reproduction, 104(5): 1008-1021. [12] Chen C, Liu W, Guo J, et al.2021. Nuclear m6 A reader YTH‐ DC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos[J]. Protein Cell, 16(6): 455-474. [13] Cheng Q, Wang P, Wu G, et al.2021. Coordination of m6A mRNA methylation and gene transcriptome in rice re‐ sponse to cadmium stress[J]. Rice (N Y), 14(1): 62. [14] Christian K J, Lang M A and Raffalli-Mathieu F.2008. Inter‐action of heterogeneous nuclear ribonucleoprotein C1/C2 with a novel cis-regulatory element within p53 mRNA as a response to cytostatic drug treatment[J]. Molecular Pharmacology 73(5): 1558-1567. [15] Cote C A, Gautreau D, Denegre J M, et al.1999. A xenopus protein related to hnRNP I has a role in cytoplasmic RNA localization[J]. Molecular Cell, 4(3): 431-437. [16] Dai N, Zhao L, Wrighting D, et al.2015. IGF2BP2/IMP2-De‐ficient mice resist obesity through enhanced translation of Ucp1 mRNA and other mRNAs encoding mitochon‐ drial proteins[J]. Cell Metabolism, 21(4): 609-621. [17] Deng M, Chen B, Liu Z, et al.2020. YTHDF2 Regulates ma‐ ternal transcriptome degradation and embryo develop‐ ment in goat[J]. Frontiers in Cell and Development Bi‐ ology, 8: 580367-580377. [18] Desrosiers R, Friderici K, Rottman F.1974. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells[J]. Proceedings of the Nation‐ al Academy of Sciences of the USA, 71(10): 3971-3975. [19] Doxtader K A, Wang P, Scarborough A M, et al.2018. Struc‐tural basis for regulation of METTL16, an S-adenosyl‐methionine homeostasis factor[J]. Molecular Cell, 71(6): 1001-1011. [20] Du H, Zhao Y, He J, et al.2016. YTHDF2 destabilizes m6A- containing RNA through direct recruitment of the CCR4-NOT deadenylase complex[J]. Nature Communi‐ cations, 7: 12626-12637. [21] Duan H C, Wang Y and Jia G2019. Dynamic and reversible RNA N6 -methyladenosine methylation[J]. Wiley Inter‐ discplinary Reviews, 10(1): e1507. [22] Dubin D H, Taylor R H1975. The methylation state of poly A- containing- messenger RNA from cultured hamster cells[J]. Nucleic Acids Research, 2(10): 1653-1668. [23] Dunn D B, Smith J D1955. Occurrence of a new base in the deoxyribonucleic acid of a strain of Bacterium coli[J]. Nature, 175(4451): 336-337. [24] Fang F, Wang X, Li Z, et al.2021. Epigenetic regulation of mRNA N6-methyladenosine modifications in mammali‐ an gametogenesis[J]. Molecular Human Reproduction, 27(5): gaab025. [25] Garcia-Perez J L, Widmann T J and Adams I R2016. The im‐ pact of transposable elements on mammalian develop‐ ment[J]. Development, 143(22): 4101-4114. [26] Geula S, Moshkovitz S M and Dominissini D, et al.2015. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation[J]. Science, 347(6225): 1002-1006. [27] Hansen T V, Hammer N A, Nielsen J, et al.2004. Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein1-deficient mice[J]. Molecular and Celluar Biology, 24(10): 4448-4464. [28] Hao J, Yu X, Gao W, et al.2019. The perturbed expression of m6A in parthenogenetic mouse embryos[J]. Genetics and Molecular Biology, 42(3): 666-670. [29] Huang H, Weng H and Chen J.2020a. m6A modification in coding and non-coding RNAs: Roles and therapeutic im‐ plications in cancer[J]. Cancer Cell, 37(3): 270-288. [30] Huang X, Zhang J, Jiang Y, et al.2020b. IGF2BP3 may con‐ tributes to lung tumorigenesis by regulating the alterna‐ tive splicing of PKM[J]. Front Bioeng Biotechnol, 8: 679. [31] Ivayla I, Christian M, Monica D G, et al.2017. The RNA m6A reader YTHDF2 is essential for the post-transcrip‐ tional regulation of the maternal transcriptome and oo‐ cyte competence[J]. Molecular Cell, 67(6): 1059-1067. [32] Jia G, Fu Y, Zhao X, et al.2011. N6-Methyladenosine in nu‐ clear RNA is a major substrate of the obesity-associated FTO.[J]. Nature Chemical Biology, 7(12): 885-887. [33] Jia G X, Lin Z, Yan R G, et al.2020. WTAP function in sertoli cells is essential for sustaining the spermatogonial stem cell niche[J]. Stem Cell Reports, 15(4): 968-982. [34] Hao J, Huang S, Wang D, et al.2021. Loss of WTAP impairs early parthenogenetic embryo development[J]. Ani‐ mals, 11(6): 1675. [35] Jones A N, Tikhaia E, Mourão A, et al.2022. Structural ef‐ fects of m6A modification of the Xist A-repeat AUCG tetraloop and its recognition by YTHDC1[J]. Nucleic Acids Research, 50(4): 2350-2362. [36] Kasowitz S D, Ma J, Anderson S J, et al.2018. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development[J]. PLOS Genetics, 14(5): 1-13. [37] Konig J, Zarnack K, Rot G, et al.2010. iCLIP reveals the function of hnRNP particles in splicing at individual nu‐ cleotide resolution[J]. Nature Structural and Molecular Biology, 17(7): 909-915. [38] Kwon J, Jo Y J, Namgoong S, et al.2019. Functional roles of hnRNPA2/B1 regulated by METTL3 in mammalian em‐ bryonic development[J]. Scientific Reports, 9(1): 8640-8652. [39] Laible G, Oback B and Mclean Z.2020. Embryo-mediated ge‐ nome editing for accelerated genetic improvement of livestock[J]. Frontiers of Agricultural Science and Engi‐ neering, 7(2): 148-150. [40] Lee E K, Kim H H, Kuwano Y, et al.2010. hnRNPC pro‐motes APP translation by competing with FMRP for APP mRNA recruitment to P bodies[J]. Nature Structral and Moleclar Biology, 17(6): 732-739. [41] Lesbirel S, Viphakone N, Parker M, et al.2018. The m6A- methylase complex recruits TREX and regulates mRNA export[J]. Scientific Reports, 2018(8): 13827. [42] Li F, Zhao D, Wu J, et al.2014. Structure of the YTH domain of human YTHDF2 in complex with an m6A mononu‐ cleotide reveals an aromatic cage for m6A recognition[J]. Cell Research, 24(12): 1490-1492. [43] Li J, Kang L N and Qiao Y L2011. Review of the cervical cancer disease burden in mainland china[J]. Asian Pa‐ cific Journal of Cancer Prevention, 12(5): 1149-1153. [44] Li M, Zhao X, Wang W, et al.2018. Ythdf2-mediated m6A mRNA clearance modulates neural development in mice[J]. Genome Biology, 19(1): 69-84. [45] Li S, Mason C E2014. The pivotal regulatory landscape of RNA modifications[J]. Annual Review of Genomics and Human Genetics, 15: 127-150. [46] Li X, Tian G and Wu J.2021. Novel circGFRα1 promotes self-renewal of female germline stem cells mediated by m6A writer METTL14[J]. Frontiers in Cell and Devel‐ opmental Biology, 9: 640402. [47] Li X C, Jin F, Wang B Y, et al.2019. The m6A demethylase ALKBH5 controls trophoblast invasion at the maternal- fetal interface by regulating the stability of CYR61 mRNA[J]. Theranostics, 9(13): 3853-3865. [48] Lin W, Piskol R, Tan MH, et al.2012. Comment on“wide‐spread RNA and DNA sequence differences in the hu‐man transcriptome”[J]. Science, 335(6074): 1302-1303. [49] Liu H B, Muhammad T A, Guo Y, et al.2019. RNA-binding protein IGF2BP2/IMP2 is a critical maternal activator in early zygotic genome activation[J]. Zygotic Genome Activation, 6(15): 1900295-1900309. [50] Liu J, Yue Y, Han D, et al.2014. A METTL3-METTL14 com‐ plex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nature Chemical Biology, 10(2): 93-95. [51] Liu N, Dai Q, Zheng G, et al.2015. N(6)-methyladenosine-de‐ pendent RNA structural switches regulate RNA-protein interactions[J]. Nature, 518(7540): 560-564. [52] Liu N, Pan T.2016. N6-methyladenosine-encoded epitran‐ scriptomics[J]. Nature Structural amd Molecuar Biolo‐ gy, 23(2): 98-102. [53] Liu X, Wang H, Zhao X, et al.2021. Arginine methylation of METTL14 promotes RNA N6-methyladenosine modifi‐ cation and endoderm differentiation of mouse embryon‐ ic stem cells[J]. Nature Communications, (12): 3780-3793. [54] Louloupi A, Ntini E, Conrad T, et al.2018. Transient N6- methyladenosine transcriptome sequencing reveals a regulatory role of m6A in splicing efficiency[J]. Cell Reports, 23(12): 3429-3437. [55] Ma J Y, Li M, Luo Y B, et al.2013. Maternal factors required for oocyte developmental competence in mice: Tran‐ scriptome analysis of non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) oocytes[J]. Cell Cycle, 12(12): 1928-1938. [56] Mccloskey A, Taniguchi I, Shinmyozu K, et al.2012. hnRNP C tetramer measures RNA length to classify RNA poly‐ merase II transcripts for export[J]. Science, 335(6076): 1643-1646. [57] Mei W, Lee K W, Marlow F L, et al.2009. hnRNP I is re‐ quired to generate the Ca2+ signal that causes egg activa‐ tion in zebrafish[J]. Development, 136(17): 3007-3017. [58] Meng T G, Lu X, Guo L, et al.2019. Mettl14 is required for mouse postimplantation development by facilitating epi‐ blast maturation[J]. Federation of American Societies‐for Experimental Biology, 33(1): 1179-1187. [59] Meyer K D, Patil D P, Zhou J, et al.2015. 5' UTR m(6)A pro‐motes cap-independent translation[J]. Cell, 163(4): 999-1010. [60] Mori H.2001. Expression of mouse igf2 mRNA-Binding pro‐ tein 3 and its implications for the developing central ner‐ vous system.[J]. Journal of Neuroscience Research, 64(2): 132-143. [61] Nance D J, Satterwhite E R, Bhaskar B, et al.2020. Character‐ ization of METTL16 as a cytoplasmic RNA binding pro‐ tein[J]. PLoS One, 15(1): e0227647. [62] Natalia W M, Raman P R, Mateusz M, et al.2017. Regulation of m6A transcripts by the 3'-5' RNA helicase YTHDC2 is essential for a successful meiotic program in the mam‐ malian germline[J]. Molecular Cell, 68(2): 374-387. [63] Park S J, Shirahige K, Ohsugi M, et al.2015. DBTMEE: A da‐ tabase of transcriptome in mouse early embryos[J]. Nu‐ cleic Acids Research, 43(Database issue): 771-776. [64] Park Y M, Hwang S J, Masuda K, et al.2012. Heterogeneous nuclear ribonucleoprotein C1/C2 controls the metastatic potential of glioblastoma by regulating PDCD4[J]. Mo‐ lecular and Cell Biology, 32(20): 4237-4244. [65] Pendleton K E, Chen C, Liu K, et al.2017. The U6 snRNA m6A methyltransferase METTL16 regulates SAM syn‐ thetase intron retention[J]. Cell, 169(5): 824-835. [66] Ping X L, Sun B F, Wang L, et al.2014. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Research, 24(2): 177-189. [67] Praveen B, Tina L, Chiara P, et al.2021. Hakai is required for stabilization of core components of the m6A mRNA methylation machinery[J]. Nature Communications, 12(1): 3778. [68] Robida M, Sridharan V, Morgan S, et al.2010. Drosophila polypyrimidine tract-binding protein is necessary for spermatid individualization[J]. Proceedings of the Na‐ tional Academy of Sciences, 107(28): 12570-12575. [69] Roundtree I A, Evans M E, Pan T, et al.2017. Dynamic RNA modifications in gene expression regulation[J]. Cell, 169(7): 1187-1200. [70] Ruszkowska A.2021. METTL16, Methyltransferase-like pro‐ tein 16: Current insights into structure and function[J]. International Journal of Molecular Sciences, 22(4): 2176. [71] Schwartz S, Mumbach M R, Jovanovic M, et al.2014. Pertur‐ bation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites[J]. Cell Re‐ ports, 8(1): 284-296. [72] Shay G, Sharon M, Dan D, et al.2015. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluri‐ potency toward differentiation[J]. Science, 347(6225): 1002-1006. [73] Shen W, Jun Z, Xiang W, et al.2020. Differential roles of YTHDF1 and YTHDF3 in embryonic stem cell-derived cardiomyocyte differentiation[J]. RNA biology, 18(9): 1354-1363. [74] Shetty S.2015. Regulation of urokinase receptor mRNA sta‐ bility by hnRNP C in lung epithelial cells[J]. Molecular And Cellular Biochemistry, 272(1-2): 107-118. [75] Shi H, Wang X, Lu Z, et al.2017. YTHDF3 facilitates transla‐ tion and decay of N6-methyladenosine-modified RNA[J]. Cell Research, 27(3): 315-328. [76] Shi H, Wei J, He C2019. Where, when, and how: Context-de‐ pendent functions of RNA methylation writers, readers, and erasers[J]. Molecular Cell, 74(4): 640-650. [77] Singh V, Gowda C P, Ganapathy A S, et al.2020. The mRNA- binding protein IGF2BP1 maintains intestinal barrier function by up-regulating occludin expression[J]. The Journal of Biology Chemistry, 295(25): 8602-8612. [78] Soh Y Q S, Mikedis M M, Kojima M, et al.2017. Meioc maintains an extended meiotic prophase I in mice[J]. PLoS Genetics, 13(4): e1006704. [79] Soizik B, Jérémy S, Jean-Marc D, et al.2019. Readers of the m6A epitranscriptomic code[J]. Biochimica et Bio‐ physica Acta. Gene Regulatory Mechanisms, 1862(3): 329-342. [80] Song H, Feng X, Zhang H, et al.2019. METTL3 and ALK‐ BH5 oppositely regulate m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygen‐ ation-treated cardiomyocytes[J]. Autophagy, 15(8): 1419-1437. [81] Su R, Dong L, Li Y, et al.2022. METTL16 exerts an m6A-in‐ dependent function to facilitate translation and tumori‐ genesis[J]. Nature Cell Biology, 24(2): 205-216. [82] Sui X, Hu Y, Ren C, et al.2020. METTL3-mediated m(6)A is required for murine oocyte maturation and maternal-to- zygotic transition[J]. Cell Cycle, 19(4): 391-404. [83] Sun T, Wu R, Ming L2019. The role of m6A RNA methyla‐tion in cancer[J]. Biomedicine & Pharmacotherapy, 112: 0753-3322. [84] Turco M Y, Gardner L, Kay R G, et al.2018. Trophoblast or‐ ganoids as a model for maternal-fetal interactions dur‐ ing human placentation[J]. Nature, 564(7735): 263-267. [85] Velusamy T, Shetty P, Bhandary Y P, et al.2008. Posttranscrip‐tional regulation of urokinase receptor expression by heterogeneous nuclear ribonuclear protein C[J]. Bio‐chemistry, 47(24): 6508-6517. [86] Wang J, Gu Q, Ma Y, et al.2020. The biological function of m6A demethylase ALKBH5 and its role in human dis‐ ease[J]. Cancer Cell International, 2020(20): 347-353. [87] Wang P, Doxtader K A, Nam Y.2016a. Structural basis for co‐ operative function of Mettl3 and Mettl14 methyltransfer‐ ases[J]. Molecular Cell, 63(2): 306-317. [88] Wang X, Feng J, Xue Y, et al.2016b. Structural basis of N6- adenosine methylation by the METTL3-METTL14 com‐ plex[J]. Nature, 534(7608): 575-578. [89] Wang X, Lu Z, Gomez A, et al.2013. N6-methyladenosine-de‐ pendent regulation of messenger RNA stability[J]. Na‐ ture, 505(7481): 117-120. [90] Wang X, Zhao B S, Roundtree I A, et al.2015. N6-methyl‐ adenosine modulates messenger RNA translation effi‐ ciency[J]. Cell, 161(6): 1388-1399. [91] Wang Y, Li Y, Toth J I, et al.2014. N6-methyladenosine modi‐ fication destabilizes developmental regulators in embry‐ onic stem cells[J]. Nature Cell Biology, 16(2): 191-198. [92] Wang Y, Li Y, Yue M, et al.2018. N(6)-methyladenosine RNA modification regulates embryonic neural stem cell self- renewal through histone modifications[J]. Nature Neu‐ roscience, 21(2): 195-206. [93] Warda A S, Kretschmer J, Hackert P, et al.2017. Human METTL16 is a N 6 ‐ methyladenosine (m6A) methyl‐ transferase that targets pre‐mRNAs and various non‐cod‐ ing RNAs[J]. EMBO Reports, 18(11): 2004-2014. [94] Wei C M, Gershowitz A, Moss B.1975. Methylated nucleo‐ tides block 5' terminus of HeLa cell messenger RNA[J]. Cell, 4(4): 379-386. [95] Wei C M, Gershowitz A, Moss B.1976. 5'-terminal and inter‐ nal methylated nucleotide sequences in HeLa cell IR‐ RMA[J]. Biochemistry, 15(2): 397-401. [96] Wei J, Liu F, Lu Z, et al.2018. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucle‐ us and cytoplasm[J]. Molecular Cell, 71(6): 973-985. [97] Widagdo J, Anggono V, Wong JJ-L2022. The multifaceted ef‐ fects of YTHDC1-mediated nuclear m6A recognitionv[J]. Trends in Genetics, 38(4): 325-332. [98] Wojtas M N, Pandey R R, Mendel M, et al.2017. Regulation of m6A transcripts by the 3'--5' RNA helicase YTHDC2 is essential for a successful meiotic program in the mam‐ malian germline[J]. Molecular Cell, 68(2): 374-387e312. [99] Xia H, Zhong C, Wu X, et al.2018. Mettl3 mutation disrupts gamete maturation and reduces fertility in zebrafish[J]. Genetics, 208(2): 729-743. [100] Xiang Y, Laurent B, Hsu C H, et al.2017. RNA m6A methyla‐ tion regulates the ultraviolet-induced DNA damage re‐ sponse[J]. Nature, 543(7646): 573-576. [101] Xu K, Yang Y, Feng G H, et al.2017. Mettl3-mediated m(6)A regulates spermatogonial differentiation and meiosis ini‐ tiation[J]. Cell Research, 27(9): 1100-1114. [102] Xu W, Li J, He C, et al.2021. METTL3 regulates heterochro‐ matin in mouse embryonic stem cells[J]. Nature, 591(7849): 317-321. [103] Yue Y, Liu J, He C.2015. RNA N6-methyladenosine methyla‐ tion in post-transcriptional gene expression regulation[J]. Genes & Development, 29(13): 1343-1355. [104] Yoshiyasu F, Chie N, Masahide A.2008. Wtap is required for differentiation of endoderm and mesoderm in the mouse embryo[J]. Developmental Dynamics, 237(3): 618-629. [105] Zaccara S, Jaffrey S R.2020. A unified model for the function of YTHDF proteins in regulating m(6)A-modified mRNA[J]. Cell, 181(7): 1582-1595 [106] Zaccara S, Ries R J, Jaffrey S R.2019. Reading, writing and erasing mRNA methylation[J]. Nature Reviews. Molec‐ ular Cell Biology, 20(10): 608-624. [107] Zarnack K, Konig J, Tajnik M, et al.2013. Direct competition between hnRNP C and U2AF65 protects the transcrip‐ tome from the exonization of Alu elements[J]. Cell, 152(3): 453-466. [108] Zhang S, Zhao B S, Zhou A, et al.2017. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program[J]. Cancer Cell, 31(4): 591-606. [109] Zhang Y, Wei Y, Zhang J, et al.2020. The development and application of genome editing technology in ruminants: A review[J]. Frontiers of Agricultural Science and Engi‐ neering, 7(2): 171-180. [110] Zheng G, Dahl J A, Niu Y, et al.2013. ALKBH5 is a mamma‐ lian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Molecular Cell, 49(1): 18-29. [111] Zhu W, Wang J Z, Wei J F, et al.2021. Role of m6A methyl‐ transferase component VIRMA in multiple human can‐ cers (Review)[J]. Cancer Cell International, 21(1): 172.