1 Guangxi Subtropical Crops Research Institute, Nanning 530002, China; 2 Guangxi Subtropical Fruits Processing Research Center of Engineering Technology, Nanning 530002, China;
摘要茶多酚是茶树(Camelliasinensis)的主要次级代谢产物,与茶树的新陈代谢、生长发育及品质非常密切。茶树酚类物质的合成涉及多种酶。目前针对茶树酚类合成途径特定酶开发的 SSR 分子标记引物及应用还较少。本研究基于茶树全基因组序列,以茶树酚类物质合成途径12个关键酶的基因及其侧翼序列开发获得了 158 对 SSR 分子标记引物,其中类黄酮 3'-羟化酶开发获得的 SSR 引物最多,有 29 对,肉 桂酸羟化酶最少,只有1对。所开发的158对SSR引物,位于基因间隔区的最多,依次是内含子区、上游区及外显子区,位于5′端上游非编码区的最少。这些引物总计有122个重复单元,其中二核苷酸最多,之后依次为三核苷酸、四核苷酸及五核苷酸,最少的是六核苷酸。从158对SSR引物中挑选68对进行了引物多态性筛选,将获得的13对多态性好的引物开展72份茶树种质资源遗传多样性的研究,共获得105种带型,同一样品的重复样可聚在一起,表明所筛选的引物能很好地区分种质资源,具有较好的准确性。72份茶树种质资源的遗传相似系数为0.8120~0.9849。本研究为茶树基于主要内含物酚类物质开展核心种质构建、新品种选育及品种鉴定等提供依据,同时也可为针对特定基因开发SSR分子标记提供参考方法。
Abstract:Tea polyphenols are the main secondary metabolites of tea plant (Camellia sinensis). They are closely related to the metabolism, growth and quality of tea plant. The synthesis of tea tree phenolic involves a variety of enzymes. At present, the development and application of SSR molecular marker primers for specific enzymes in the tea plant synthesis pathway are still rare. This study was based on the whole genome sequence of tea plant; 158 pairs of SSR molecular marker primers were developed based on 12 key enzyme genes and their flanking sequences of tea plant phenolic synthesis pathway. Among them, the most SSR primers were obtained from flavonoid 3'-hydroxylase gene, with 29 pairs, and the least was cinnamate 4-hydroxylasegene, with only 1 pair. Among the 158 SSR primers, the most were located in the intergenic region, followed by the intron region, upstream region and exon region, and the least were located in the 5' untranslated region. These primers had 122 repeat units, among which dinucleotide was the most, followed by trinucleotide, tetranucleotide and pentanucleotide, and hexanucleotide was the least. 68 pairs of SSR primers were selected from 158 pairs of primers for primer polymorphism screening. The genetic diversity of 72 tea germplasm resources was studied by using 13 pairs of primers with good polymorphism. A total of 105 banding type were obtained, and the duplicate samples of the same sample can be gathered together. The genetic similarity coefficient (GS) of 72 tea germplasm resources ranged from 0.812 0 to 0.984 9. The results showed that the selected primers could distinguish the germplasm resources well and had good accuracy. This study can provide a basis for core germplasm construction, new variety selection and variety identification based on phenolic substances in tea plant, and also provide a reference method for developing SSR molecular markers for specific genes.
[1] 陈春林, 田易萍, 陈林波, 等 . 2018. 基于荧光标记的紫娟茶树转录组 EST-SSR 标记开发[J]. 江苏农业学报, 34(4): 747-753. (Chen C L, Tian Y P, Chen L B, et al.2018. EST-SSR marker development of Zijuan tea tree transcriptome based on the fluorescent labeling[J]. Jiangsu Journal of Agricultural Sciences, 34(4): 747-753.) [2] 陈啸天, 高丽萍, 赵磊, 等 . 2012. 茶树类黄酮 3', 5'-羟化酶在大肠杆菌的表达和优化[J]. 安徽农业大学学报 , 39(05): 707-713. (Chen X T, Gao L P, Zhao L, et al.2012.Expression and optimization of flavonoid 3', 5'-hydroxy lase of tea plant [Camellia sinensis (L.) O. Kuntze] in Escherichia coli[J]. Journal of Anhui Agricultural Univer sity, 39(05): 707-713.) [3] 陈义, 张永瑞, 张禄焕, 等 . 2020. 不同嫩度茶树新梢主要滋味物质分布规律研究[J]. 食品研究与开发 , 41(22): 1005-6521. (Chen Y, Zhang Y R, Zhang L H,et al.2020. Study on distribution of main flavor substances in new shoots of tea trees with different tenderness[J]. Food Research and Development, 41(22): 1005-6521.) [4] 邓少春, 陈林波, 田易萍, 等 . 2018. 基于荧光标记的茶树花转录组序列 SSR 标记开发[J]. 分子植物育种, 16(18): 6001-6008. (Deng S C, Chen L B, Tian Y P, et al.2018. EST-SSR marker development for transcriptional se quence of tea (Camellia sinensis) flower based on fluorescent[J]. Marker Molecular Plant Breeding, 16(18): 6001-6008.) [5] 邓少春, 田易萍, 李友勇, 等 . 2015. 茶树资源核心种质研究进展[J]. 中国农学通报 , 31(16): 121-126. (Deng S C, Tian Y Y, Li Y Y, et al.2015. Research progress of core germplasm of tea tree resources[J]. Chinese Agricultural Science Bulletin, 31(16): 121-126.) [6] 胡晓婧, 许玉娇, 高丽萍, 等 . 2014. 茶树黄烷酮 3-羟化酶基因(F3H)的克隆及功能分析[J]. 农业生物技术学报, 22 (3): 309-316.(Hu X J, Xu Y J, Gao L P, et al. 2014. Cloning and functional analysis of flavanone 3-hydroxylase gene(F3H) in tea(Camellia sinensis)[J]. Journal of Agricultural Biotechnology, 22(3): 309-316.) [7] 刘振 .2008. 茶树资源核心种质的构建策略研究与 EST-SSR 标记的初步验证[D]. 硕士学位论文, 中国农业科学院, 导师: 陈亮, pp. 40-49. (Liu Z.2008. Construction strategy and preliminary EST-SSR validation of core collection for tea tree germplasm (Camellia spp.) [D]. Thesis for M. S. , Chinese Academy of Agricultural Sciences, Supervisor: Cheng L, pp. 40-49.) [8] 彭靖茹, 檀业维, 黄寿辉, 等 . 2020. 茶树'云抗 10 号'全基因组 SSR 信息分析及 4CL 基因引物开发[J]. 分子植物育种, 18(16): 5411-5418. (Peng J R, Tan Y W, Hang S H, etal.2020.SSR information analysis and 4CL gene primer development of tea tree cultivar 'Yunkang10' whole genome[J]. Molecular Plant Breeding, 18(16): 5411-5418.) [9] 乔婷婷 .2010. 茶树资源遗传多样性及其表型性状关联 EST-SSR 位点的初步鉴定[D]. 硕士学位论文, 中国农业科学院, 导师: 陈亮, pp.37-46. (Qiao T T.2010. Genetic diversity of tea (Camellia sinensis(L.) O. Kuntze) and association analysis fo phenotypic traits with EST-SSR markers[D]. Thesis for M.S., Chinese Academy of Agricultural Sciences, Supervisor: Cheng L, pp. 37-46.) [10] 乔婷婷, 马春雷, 周炎花, 等 . 2010. 浙江省茶树地方品种与选育品种遗传多样性和群体结构的 EST-SSR 分析[J]. 作物学报, 36(5): 744-753. (Qiao T T, Ma C L, Zhou Y H,et al.2010. EST-SSR genetic diversity and population structure of tea landraces anddeveloped cultivars (Lines) in Zhejiang Province, China[J]. Acta Agronomica Sinica, 36(5): 744-753.) [11] 乔小燕, 马春雷, 陈亮 . 2009. 茶树黄酮合成酶Ⅱ基因全长cDNA 序列的克隆和实时荧光定量 PCR 检测[J]. 茶叶科学 , 29(5): 347-354. (Qiao X Y, Ma C L, Chen L.2009. Molecular cloning and real-time PCR analysis of flavone synthase Ⅱ gene full-length cDNA from the teaplant[J]. Journal of Tea Science, 29(5): 347-354.) [12] 宛晓春 .2003. 茶叶生物化学[M]. 北京: 中国农业出版社, pp. 8-18. (Wan X C.2003. Tea biochemistry[M]. China Agriculture Press, Beijing, China, pp.8-18.) [13] 王丽鸳 .2011. 基于 EST 数据库及转录组测序的茶树 DNA分子标记开发与应用研究[D]. 博士学位论文, 中国农业科学院, 导师: 成浩, pp.26-38. (Wang L Y.2011.Mining and applicationof molecular markers from EST d atabase and transcriptome sequencing in tea plant (Camellia sinensis) [D]. Thesis for Ph. D., Chinese Academy of Agricultural Sciences, Supervisor: Cheng H, pp. 26-38.) [14] 夏涛, 高丽萍 . 2009. 类黄酮及茶儿茶素生物合成途径及其调控研究进展[J]. 中国农业科学, 42(08): 2899-2908. (Xia T, Gao L P.2009. Advances in biosynthesis pathways and regulation of flavonoids and catechins[J]. Scientia Agricultura Sinica, 42(08): 2899-2908.) [15] 夏涛, 高丽萍, 刘亚军, 等 . 2013. 茶树酯型儿茶素生物合成及水解途径研究进展[J]. 中国农业科学, 46(11): 2307-2320. (Xia T, Gao L P, Liu Y J, et al.2013. Advances in research of biosynthesis and hydrolysis pathwaysof gallated catechins in Camellia sinensis[J]. Scientia Agricultura Sinica, 46(11): 2307-2320.) [16] 张洁茹 .2014. 茶树 genomesury 信息的 gSSR 分子标记开发及初步应用[D]. 硕士学位论文,安徽农业大学,导师: 韦朝领,宛晓春, pp. 13-23. (Zhang J R.2014.Screening of tea genomic-SSR molecular markers based on the tea genome survey information and its preliminary application [D]. Thesis for M.S., Anhui Agricultural University, Supervisor: Wei Z L, and Wan X C, pp.13-23.) [17] 张丽群, 韦康, 王丽鸳, 等 . 2014. 茶树 CHS 基因结构及编码区单核苷酸多态性分析[J]. 中国农业科学 , 47(01): 133-144. (Zhang L Q, Wei K, Wang L Y, et al.2014.The structure and single nucleotide polymorphism analysis of chalcone synthase genes in tea plant (Camellia sinenesis)[J]. Scientia Agricultura Sinica, 47(01): 133-144.) [18] 周萌, 宋维希, 鄢文光, 等 . 2016. 基于紫娟茶叶片转录组的 SSR 引物开发[J]. 华北农学报 , 31( 增刊): 140-145. (Zhou M, Song W X, Yan W G, et al.2016.SSR primers development based on Zijuancha leaves' transcription group[J]. Acta Agriculturae Boreali-Sinica, 31(Supplement): 140-145.) [19] 周天山 .2016. 茶树类黄酮 3'-羟基化酶功能分析及其在代谢工程中的应用[D]. 硕士学位论文, 西北农林科技大学,导师: 杨亚军, pp.13-32, 76. (Zhou T S.2016. Characterization of flavonoid 3 ' -hydroxygenase from tea plant andits application in metabolic engineering[D]. Thesis for M.S., Northwest A&F University, Supervisor: Yang Y J, pp. 13-32, 76.) [21] Xia E H,Zhang H B,Sheng J, et al.2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Molecular Plant, 10(6): 866-877