Bovine (Bos taurus) ANO1 Gene is a Placental-specific Paternal Imprinting Gene
GU Shu-Kai1, LI Jun-Liang1, CHEN Wei-Na1, 2, ZHANG Cui1, XU Da1, LI Dong-Jie3, LI Shi-Jie1, *
1 College of Life Science, Hebei Agricultural University, Baoding 071001, China; 2 Department of Traditional Chinese Medicine, Hebei University, Baoding 071001, China; 3 College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Abstract:In mammals, genomic imprinting is an epigenetic phenomenon by which certain genes are expressed from one allele, in a parent-of-origin-specific manner. ANO1 (Anoctamin 1) protein is a subunit of calcium-activated chloride channel. Overexpression of ANO1 gene is associated with a variety of human (Homo sapiens) cancers. In human, ANO1 gene exhibits biallelic expression in embryos and adult tissues, but shows maternal allele expression in placenta. At present, the imprinting status and regulation mechanism of ANO1 gene in bovine (Bos taurus) have not been reported. In this study, in order to analyze the imprinting status of ANO1 gene in cattle, SNP was first found on ANO1 gene by direct sequencing of PCR products, and then reverse transcription-PCR (RT-PCR) was performed on RNA derived from tissues and placentas of heterozygous cattle. Direct sequencing showed that the imprinting status of ANO1 gene in cattle was placenta-specific imprinting and maternal allele-specific expression. The specific methylation status of the promoter region of ANO1 gene in bovine placenta, bovine sperm and adult bovine tissues was further analyzed by sulfite sequencing. It was found that the promoter methylation of ANO1 gene did not participate in the gene imprinting expression. The results showed that bovine ANO1 gene was a placenta-specific paternal imprinting gene, which provides a reference for further study of the relationship between ANO1 gene expression and related diseases.
[1] 贺黉裕, 张宏伟. 2014. 印记基因SLC22A18的表达与乳腺癌侵袭能力的关系[J]. 中国临床医学, 21(02): 134-136. (He H Y, Zhang H W.2014. Relationship between the expression of imprinted gene SLC22A18 and the invasion of human breast cancer[J]. Chinese Journal of Clinical Medicine, 21(02): 134-136.) [2] 侯毅鞠, 许会静, 张雲乔, 等. 2015. 钙激活氯通道ANO1在小鼠心肌细胞的表达及其功能鉴定[J]. 中国病理生理杂志, 31(3): 539-542. (Hou Y J, Xu H J, Zhang Y Q, et al.2015. Expression and identification of ANO1 in mouse cardiomyocytes[J]. Chinese Journal of Pathophysiology, 31(3): 539-542.) [3] 梅丽丽, 史志周. 2016. 钙离子激活的氯离子通道蛋白ANO1在肿瘤发病机制中的作用[J].中国病理生理杂志, 32(04): 759-761, 768.(Mei L L, Shi Z Z. 2016. Effects of ANO1 on tumorigenesis[J]. Chinese Journal of Pathophysiology. 32(4): 759-761, 768.) [4] 盛菲, 李文. 2017. 基因组印记与胎盘发育的研究进展[J]. 中华生殖与避孕杂志, 37(06): 511-514. (Sheng F, Li W.2017. Research progress of genetic imprinting and placenta development[J]. Reproduction and Contraception, 37(06): 511-514.) [5] 吴开林, 谢青贞. 2017. 钙离子激活的氯离子通道蛋白TMEM16A在女性生殖系统中的研究进展[J]. 海南医学, 28(20): 3360-3364. (Wu K L, Xie Q Z.2017. Research progress of calcium-activated chloride channel TMEM16A in female reproductive system[J]. Hainan Medical Journal, 28(20): 3360-3364.) [6] 吴瑜, 冯旭, 高岚, 等. 2016. 印记基因: 发育中的重要调节因子[J]. 遗传, 38(6): 508-522. (Wu Y, Feng X, Gao L, et al.2016. Imprinted genes: Important regulators in development[J]. Hereditas, 38(6): 508-522.) [7] 张守全, 冯定远, 田秀春, 等. 2003. 哺乳动物印记基因的研究进展[J]. 中国生物工程杂志, 23(12): 48-54, 61.(Zhang S Q, Feng D Y, Tian X C, et al. 2003. Progress on imprinted genes in mammals[J]. China Biotechnology, 23(12): 48-54, 61.) [8] 张雲乔, 王胜, 刘艳杰, 等. 2016. 钙激活氯通道蛋白ANO1在小鼠主动脉平滑肌细胞的表达及其功能鉴定[J]. 中国兽医杂志, 52(12): 87-88, 92, 55.(Zhang Y Q, Wang S, Liu Y J, et al. 2016. Expression and functional identification of ANO1 in murine aortic smooth muscle cells[J]. Chinese Journal of Veterinary Medicine, 52(12): 87-88, 92, 55.) [9] 赵玉洁, 马可, 肖庆桓. 2018. ANO1钙激活氯通道生理功能及调节机制概述[J]. 解剖科学进展, 24(02): 201-204. (Zhao Y J, Ma K, Xiao Q H.2018. Summary of physiological function and regulation mechanism of ANO1[J]. Progress of Anatomical Sciences, 24(02): 201-204.) [10] 訾晓渊, 熊俊, 胡以平. 2001. 基因组印迹基因及其生物学意义[J]. 中国科学基金, (02): 6-10. (Zi X Y, Xiong J, Hu Y P. 2001. Genomic imprinted gene and its biological significance[J]. Bulletin of National Natural Science Foundation of China, (02): 6-10.) [11] Andersson L.2013. Molecular consequences of animal breeding[J]. Current Opinion in Genetics & Development, 23(3): 295-301. [12] Barlow D P, Bartolomei M S.2014. Genomic imprinting in mammals[J]. Cold Spring Harbor Perspectives in Biology, 6(2): a018382-a018382. [13] Bourneuf E, Otz P, Pausch H, et al.2017. Rapid discovery of de novo deleterious mutations in cattle enhances the value of livestock as model species[J]. Scientific Reports, 7(1): 11466. [14] Caputo A, Caci E, Ferrera L, et al.2008. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity[J]. Science, 322(5901): 590-594. [15] Daetwyler H D, Capitan A, Pausch H, et al.2014. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle[J]. Nature genetics, 46(8): 858-865. [16] Duffié R, Ajjan S, Greenberg M V, et al.2014. The Gpr1/Zdbf2 locus provides new paradigms for transient and dynamic genomic imprinting in mammals[J]. Genes & Development, 28(5): 463-478. [17] Ferguson-Smith A C, Surani M A.2001. Imprinting and the epigenetic asymmetry between parental genomes[J]. Science, 293(5532): 1086-1089. [18] Fowden A L, Sibley C, Reik W, et al.2006. Imprinted genes, placental development and fetal growth[J]. Hormone Research in Paediatrics, 65(Suppl. 3): 50-58. [19] Hermida-Prado F, Menéndez S T, Albornoz-Afanasiev P, et al.2018. Distinctive expression and amplification of genes at 11q13 in relation to HPV status with impact on survival in head and neck cancer patients[J]. Journal of clinical medicine, 7(12): E501. [20] Fulka J, Fulka H, et al.2007. Somatic cell nuclear transfer (SCNT) in mammals: The cytoplast and its reprogramming activities[J]. Advances in Experimental Medicine & Biology, 591(8): 93-102. [21] Huang F, Rock J R, Harfe B D, et al.2009. Studies on expression and function of the TMEM16A calcium-activated chloride channel[J]. Proceedings of the National Academy of Sciences of USA, 106(50): 21413-21418. [22] Keefer C L.2008, Lessons learned from nuclear transfer (cloning)[J]. Theriogenology, 69(1): 48-54. [23] Okae H, Hiura H, Nishida Y, et al.2016. Re-investigation and RNA sequencing-based identification of genes with placenta-specific imprinted expression[J]. Human Molecular Genetics, 21(3): 548-558. [24] Pedemonte N, Galietta L J V.2014. Structure and function of TMEM16 proteins (anoctamins)[J]. Physiological Reviews, 94(2): 419-459. [25] Picollo A, Malvezzi M, Accardi A.2015. TMEM16 proteins: Unknown structure and confusing functions[J]. Journal of Molecular Biology, 427(1): 94-105. [26] Rock J R, Futtner C R, Harfe B D.2008. The transmembrane protein TMEM16A is required for normal development of the murine trachea[J]. Developmental Biology, 321(1): 141-149. [27] Rodríguez-Seguí S, Akerman I, Ferrer J.2012. GATA believe it: New essential regulators of pancreas development[J]. Journal of Clinical Investigation, 122(10), 3469-3471. [28] Schroeder B C, Cheng T, Jan Y N, et al.2008. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit[J]. Cell, 134(6): 1019-1029. [29] Tucci V, Isles A R, Kelsey G, et al.2019. Genomic imprinting and physiological processes in mammals[J]. Cell, 176(5): 952-965. [30] Wei Y, Su J, Liu H, et al.2014. MetaImprint: An information repository of mammalian imprinted genes[J]. Development, 141(12): 2516-2523. [31] Xin Z, Allis C D, Wagstaff J.2001. Parent-specific complementary patterns of histone H3 lysine 9 and H3 lysine 4 methylation at the prader-willi syndrome imprinting center[J]. American Journal of Human Genetics, 69(6): 1389-1394. [32] Yohan S, Jinhong P, Minseo K, et al.2015. Inhibition of ANO1/TMEM16A chloride channel by idebenone and its cytotoxicity to cancer cell lines[J]. PLOS ONE, 10(7): e0133656. [33] Zhang Y, Zhang H, Duan D D.2013. Chloride channels in stroke[J]. Acta Pharmacologica Sinica, 34(1): 17-23.