Cloning and Expression Analysis of the Positive Regulatory Domain Zinc Finger Protein 10 Like Gene of Helicoverpa armigera
ZHANG Ya-Lin, HU De-Qin, LI Yuan, HUANGFU Hui-Lin, JIAENLISINI•Na-Zha-Er, YU Rui, LIU Xiao-Ning*
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
Abstract:Helicoverpa armigera is an omnivorous pest that causes severe yield loss of many crops. The current planting of Bt crops and the extensive use of chemical pesticides have enabled the cotton bollworm to evolve a defense mechanism that protects itself against pesticides and plants secondary substances. In order to develop an environment friendly insecticide for harmless control of H. armigera, the core sequence HE1, which can respond to 2-tridecanone (2-TD), of the cytochrome P450 CYP6B6 promoter was used as a probe to screen out a positive regulatory domain zinc finger protein 10 like (PRDM10l) gene by using DNA pull down technology. The sequence of HaPRDM10l were cloned from 6th instar larvae of H. armigera, analysed by bioinformatics and its fusion protein expressed by using a prokaryotic expression system. qPCR was used to detect the spatial-temporal expression profile of HaPRDM10l in H. armigera, and its expression pattern in the midgut of the 6th instar larvae of H. armigera was detected after 2-TD treatment. The results showed that the ORF of HaPRDM10l (GenBank No XM_021334552.1) was 2 067 bp, encoded 688 amino acids. The molecular weight and theoretical isoelectric point of the protein were 77.96 kD and 8.84, respectively. HaPRDM10l was expressed at all developmental stages of H. armigera, with the highest expression in 5th instar larvae, and among different tissues the highest expression in the midgut of 6th instar larvae. After the cotton bollworm was treated with different concentrations of 2-TD, both HaPRDM10l and CYP6B6 could respond to the induction of 2-TD. The expression of HaPRDM10l reached the maximum when 10 mg/g of 2-TD treatment for 12 h, which was 7.6 folds of that in the control group, and the expression level of CYP6B6 reached the maximum at 6 h after 5 mg/g 2-TD treatment, which was 4.6 folds that of the control group. Further analysis revealed that there was a positive correlation between the expression of HaPRDM10l and CYP6B6 in the 6 h treatment group (r=0.749, P<0.01). The above results suggested that HaPRDM10l may regulate the expression of CYP6B6 in response to the stress of 2-TD. This study provides a reference for clarifying the mechanism of the H. armigera in response to the stress of plant secondary substances.
[1] 李芬, 马纪, 刘小宁 . 2012. 棉铃虫细胞色素 P450 CYP6B6 基因启动子的活性分析[J]. 新疆大学学报:自然科学版 , 29(1): 13-18.
(Li F, Ma J, Liu X N.2012. Activity analysis of the promoter of cytochrome P450 CYP6B6 gene in Helicoverpa armigera[J]. Journal of Xinjiang University: Natural Science Edition, 29(1): 13-18.)
[2] 刘丹 .2020. 桑树多酚氧化酶基因抗逆功能研究[D]. 博士学位论文, 西南大学, 导师: 向仲怀, 何宁佳, pp. 60-74.
(Liu D.Study on the antistress function of mulberry polyphenol oxidase gene[D]. Thesis for Ph. D, Southwest University, Supervisor: Xiang Z H, He N J, pp. 60-74.)
[3] 刘小宁 .2005. 植物次生物质对棉铃虫细胞色素 P450s 的诱导及 CYP6B6 基因的克隆与表达[D]. 博士学位论文, 中国农业大学 , 导师 : 高希武 , pp. 67-73.
(Liu X N.2005. Induction of Helicoverpa armigera cytochrome P450s by plant secondary materials and cloning and ex‐ pression of CYP6B6 gene[D]. Thesis for Ph.D, China Ag‐ ricultural University, Supervisor: Gao X W, pp. 67-73.)
[4] 刘小宁, 李芬, 张学涛, 等 . 2014. 2-十三烷酮诱导棉铃虫(He- licoverpa armigera)细胞色素 P450 CYP6B6 时空表达规律的研究[J]. 干旱区研究, 31(5): 978-983.
(Liu X N, Li F, Zhang X T, et al.2014. Study on the spatiotemporal expression of cytochrome P450 CYP6B6 in Helicoverpa armigera induced by 2-tridecane[J]. Arid Zone Research, 31(5): 978-983.)
[5] 吕敏, 孙婳婳, 王丽红, 等 . 2012. 植物次生物质对棉蚜谷胱甘肽 S-转移酶和羧酸酯酶活性的诱导作用[J]. 中国农学通报, 28(3): 253-256.
(Lv M, Sun H H, Wang L H, et al.2012. Effects of secondary metabolites on activities of glutathione s-transferases, carboxylesterase in Aphid[J]. Chinese Agricultural Science Bulletin, 28(3): 253-256.)
[6] 石津 .2018. 家蚕 ShxA, ShxC1 基因启动子鉴定及表达调控研究[D]. 硕士学位论文, 西南大学, 导师: 童晓玲, 代方银, pp. 39-50.
(Shi J.2018. Identification and expression regulation of ShxA and ShxC1 gene promoters in silkworm, Bombyx mori[D]. Thesis for M. S., Southwest University, Supervisor: Tong X L, Dai F Y, pp. 39-50.)
[7] 石鑫, 李莎, 王志敏, 等 . 2021. 新疆马铃薯甲虫对噻虫嗪的抗性监测及其细胞色素 P450 基因表达分析[J]. 中国农业科学, 54(14): 3004-3016.
(Shi X, Li S, Wang Z M, et al.2021. Resistance monitoring to thiamethoxam and expression analysis of cytochrome P450 genes in Lepti- notarsa decemlineata from Xinjiang[J]. Scientia Agricul‐ tura Sinica, 54(14): 3004-3016.)
[8] 杨希晨 .2016. 大肠杆菌 esrE 基因转录调控解析[D]. 硕士学位论文 , 华东理工大学 , 导师 : 张惠展 , pp. 31-33.
(Yang X C.2016. Analysis of transcription regulation of Escherichia coli esrE gene[D]. Thesis for M.S., East Chi‐ na University of Science and Technology, Supervisor: Zhang H Z, pp. 31-33.)
[9] 赵洁, 任苏伟, 刘宁, 等 . 2018. 棉铃虫磷脂酰乙醇胺结合蛋白的克隆及表达分析[J]. 中国农业科学, 51(8): 1493-1503.
(Zhao J, Ren S W, Liu N, et al.2018. Cloning and expression of phosphatidylethanolamine binding protein in Helicoverpa armigera[J]. Scientia Agricultura Sinica,51(8): 1493-1503.)
[10] Ahmad S, Cheema H M N, Khan A A, et al.2019. Resistance status of Helicoverpa armigera against Bt cotton in Paki‐ stan[J]. Transgenic Research, 28(2): 199-212.
[11] Bruce T J A.2014. Glucosinolates in oil seed rape: Secondary metabolites that influence interactions with herbivores and their natural enemies[J]. Annals of Applied Biology, 164(3): 348-353.
[12] Dickinson M E, Flenniken A M, Xiao J, et al.2016. High- throughput discovery of novel developmental phenotypes[J]. Nature, 537(7621): 508-514.
[13] Feyereisen R.1999. Insect P450 enzymes[J]. Annual Review of Entomol, 44(1): 507-533.
[14] Gershenzon J, Dudareva N.2007. The function of terpene nat‐ ural products in the natural world[J]. Nature Chemical Biology, 3(7): 408-414.
[15] Goncalves M, Maluf W R, Gomes L, et al.1998. Variation of 2-Tridecanone level in tomato plant leaflets and resis‐ tance to two mite species (Tetranychus sp.)[J]. Euphyti‐ ca, 104(1): 33-38.
[16] Han B Y, Seah M, Brooks I R, et al.2020. Global translation during early development depends on the essential tran‐ scription factor PRDM10[J]. Nature Communications, 11(1): 3603.
[17] Krempl C, Joupen N, Reichelt M, et al.2021. Consumption of gossypol increases fatty acid-amino acid conjugates in the cotton pests Helicoverpa armigera and Heliothis vire- scens[J]. Archives of Insect Biochemistry and Physiology, 108(3): e21843.
[18] Li F, Liu X N, Zhu Y, et al.2014. Identification of the 2-tridecanone responsive region in the promoter of cyto‐ chrome P450 CYP6B6 of the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae)[J]. Bulletin of Entomological Research, 104(6): 801-808.
[19] Li X, Baudry J, Berenbaum M R, et al.2004. Structural and functional divergence of insect CYP6B proteins: From specialist to generalist cytochrome P450[J]. Proceedings of the National Academy of Sciences, 101(9): 2939-2944.
[20] Li X, Berenbaum M R, Schuler M A.2000. Molecular cloning and expression of CYP6B8: A xanthotoxin-inducible cy tochrome P450 cDNA from Helicoverpa zea[J]. Insect Biochemistry and Molecular Biology, 30(1): 75-84.
[21] Li X X, Li R, Zhu B, et al.2017. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantra‐ niliprole resistance in Plutella xylostella (L.)[J]. Pest Management Science, 74(6): 1386-1393.
[22] Liu X N, Liang P, Gao X W, et al.2006. Induction of the cyto‐ chrome P450 activity by plant allelochemicals in the cot‐ ton bollworm, Helicoverpa armigera (Hübner)[J]. Pesti‐ cide Biochemistry and Physiology, 84(2): 127-134.
[23] Ma K, Tang Q, Zhang B, et al.2019. Overexpression of multiple cytochrome P450 genes associated with sulfoxaflor resistance in Aphis gossypii Glover[J]. Pesticide Biochemistry and Physiology, 157: 204-210.
[24] Mckenzie N, Helson B, Thompson D, et al.2010. Azadi‐ rachtin: An effective systemic insecticide for control of Agrilus planipennis (Coleoptera: Buprestidae)[J]. Journal of Economic Entomology, 103(3): 708-717.
[25] Mordue A J, Blackwell A.1993. Azadirachtin: An update[J].Journal of Insect Physiology, 39(11): 903-924.
[26] Park J A, Kim K C.2010. Expression patterns of PRDM10 during mouse embryonic development[J]. Biochemistry and Molecular Biology, 43(1): 29-33.
[27] Petersen R A, Zangerl A R, Berenbaum M R, et al.2001. Expression of CYP6B1 and CYP6B3 cytochrome P450 mo‐ nooxygenases and furanocoumarin metabolism in differ‐ ent tissues of Papilio polyxenes (Lepidoptera: Papilioni‐ dae)[J]. Insect Biochemistry and Molecular Biology, 31(6-7): 679-690.
[28] Sorrentino A, Federico A, Rienzo M, et al.2018. PR/SET Do‐ main Family and Cancer: Novel Insights from the Can‐cer Genome Atlas[J]. International Journal of Molecular Sciences, 19(10): 32-50.
[29] Woo J, Jin B H, Lee M, et al.2021. Investigation of PRDM10 and PRDM13 expression in developing mouse embryos by an optimized pact-based embryo clearing method[J]. International Journal of Molecular Sciences, 22(6):2892.
[30] Zhang B L, Wang Z, Guo T Z.2019. Inheritance of transgenes in transgenic Bt lines resistance to Helicoverpa armigera in upland cotton[J]. Methods in Molecular Biology, 1902: 199-210.
[31] Zhou C X, Zhou H Y, Fang H L, et al.2020. Spo0A can effi‐ ciently enhance the expression of the alkaline protease gene aprE in Bacillus licheniformis by specifically bind‐ ing to its regulatory region[J]. International Journal of Biological Macromolecules, 159: 444-454.
[32] Zhou X, Sheng C, Mei L, et al.2010. Expression responses of nine cytochrome P450 genes to xenobiotics in the cotton bollworm Helicoverpa armigera[J]. Pesticide Biochemis try and Physiology, 97(3): 209-213.