Screening of Human BLM Gene-related LncRNAs and Analysis of Its Expression in Different Prostate Cancer Cells
LUO Bin-Jie1,2,3, YANG Li-Hong1,2,3, LI Yong1,2,3, CHEN Ying-Lian1,3,5, ZHAO Jia-Fu1,2,3,4, XU Hou-Qiang1,2,3,4,5,*
1 Key Laboratory of Genetics, Breeding and Reproduction of Plateau and Mountain Animals, Ministry of Education, College of Life Sciences, Guizhou University Guiyang 550025, China; 2 Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, College of Life Sciences, Guizhou University, Guiyang 550025, China; 3 College of Life Sciences, Guizhou University, Guiyang 550025, China; 4 College of Animal Science, Guizhou University, Guiyang 550025, China; 5 School of Medicine, Guizhou University, Guiyang 550025, China
Abstract:BLM helicase (bloom helicase, BLM) plays an important role in DNA replication, repair, recombination, and maintenance of telomere stability. When the BLM helicase gene is mutated, it is prone to cause BLM syndrome and even cancers. To explore the expression patterns of long coding RNAs related to the BLM helicase gene. In this study, miR-27b-3p, which was related to the regulation of BLM genes, though the self-developed progame SWChen2.3 to screen the LncRNAs associated with the BLM genes, and an analyzed the BLM-associated with the LncRNAs in different prostate cancer cell lines PC3、Lncap、22RV-1 and normal fibroblst cell line WPMY-1, candidate LncRNAs were cloned, and their secondary structure and ORF were predicted, and target sites related to BLM gene were analyzed. NONHSAT203515.1 (m130127_152334_00126_c100) (named BLNC203) and NONHSAT246735.1 (lnc-ZBTB201:1) (named BLNC246) were selected and employed as research objects. The qRT-PCR method was used to detect the expression of BLNC203 and BLNC246 in 3 different prostate cancer cells and a normal epithelial cell line. The qRT-PCR results showed that the 2 LncRNAs were expressed in different prostate cancer cells, the expressions of BLNC203 in PC3 and 22Rv-1 were significantly higher than that in normal cells (P<0.01), while the differences of Lncap expression were not significant among these cells (P>0.05). The expressions of BLNC246 in PC3 and Lncap cells were significantly lower than that in normal cells (P<0.01), and while the differences of 22RV-1 expression were also not significant among these 22RV-1 cells (P>0.05). BLNC203 had 3 ORFs, BLNC246 had 1 ORF. the minimum free energy of the secondary structure of BLNC203 was -239.10 kcal/mol, and the minimum free energy of BLNC246 was -85.30 kcal/mol. The results of this study will provide a theoretical basis for further research on the mechanism of LncRNAs/BLM on the proliferation of prostate cancer cells.
罗斌杰, 杨丽红, 李永, 谌颖莲, 赵佳福, 许厚强. 人BLM基因相关LncRNAs的筛选及其在不同前列腺癌细胞中的表达分析[J]. 农业生物技术学报, 2021, 29(5): 924-932.
LUO Bin-Jie, YANG Li-Hong, LI Yong, CHEN Ying-Lian, ZHAO Jia-Fu, XU Hou-Qiang. Screening of Human BLM Gene-related LncRNAs and Analysis of Its Expression in Different Prostate Cancer Cells. 农业生物技术学报, 2021, 29(5): 924-932.
[1] 曹德宏, 柳良仁, 魏强, 等. 2017. 前列腺癌的治疗研究进展[J]. 华西医学, 32(02): 277-281. (Cao D H, LIU L R, Wei Q, et al.2017. Progress in the treatment of prostate cancer[J]. Huaxi Medical Science, 32(02): 277-281. [2] 陈琨, 许厚强, 赵佳福, 等. 2018. CRISPR/Cas9技术敲除人前列腺癌PC-3细胞BLM解旋酶基因的研究[J].中国细胞生物学学报, 40(09): 1547-1553. (Chen K, Xu H Q, Zhao J F, et al.2018. CRISPR/Cas9 technology to knock out BLM helicase gene in human prostate cancer PC-3 cells[J]. Chinese Journal of Cell Biology, 40(09): 1547-1553.) [3] 谌颖莲, 许厚强, 赵佳福, 等. 2018. 影响BLM基因表达的miRNAs筛选及抑制效率研究[J]. 生物技术, 28(01): 54-59+6. (Chen Y L, Xu H Q, Zhao J F, et al.2018. Screening of miRNAs influencing BLM gene expression and study on inhibition efficiency[J]. Biotechnology, 28(01): 54-59+6.) [4] 胡铭阳, 明佳. 2017 .lncRNA与miRNA相互调控机制的研究进展[J]. 转化医学电子杂志, 4(02): 71-76. (Hu M J, Ming J.2017. Research progress on the mutual regulation mechanism of lncRNA and miRNA[J]. Journal of Translational Medicine, 4(02): 71-76.) [5] 李丹, 兰波, 康南, 等. 2016. lncRNA PCA3高表达促进前列腺癌细胞增殖、迁移并抑制细胞凋亡[J]. 医学研究杂志, 45(06): 32-37. (Li D, Lan B, Kang N, et al.2016. High expression of lncRNA PCA3 promotes the proliferation and migration of prostate cancer cells and inhibits apoptosis[J]. Journal of Medical Research, 45(06): 32-37.) [6] 刘明, 陶思行, 谭九峰, 等. 2020. 长链非编码RNA脑胞质RNA1在前列腺癌中的表达及作用机制[J]. 中国实验诊断学, 24(03): 508-512. (Liu M, TAO S X, Tan J F, et al.2020 Expression and mechanism of long noncoding RNA cytoplasm RNA1 in prostate cancer[J]. Chinese Journal of Experimental Diagnostics, 24(03): 508-512.) [7] 吕骥. 2012. PlncRNA-1通过与雄激素受体相互作用调节前列腺癌细胞增殖和凋亡[D]. 博士学位论文, 第二军医大学, 导师: 孙颖浩, PP. 27-30. (Lv J.2012. PLNCRNA-1 regulates the proliferation and apoptosis of prostate cancer cells by interacting with androgen receptors[D]. Doctoral dissertation, Second Military Medical University, supervisor: Sun Y H, PP. 27-30.) [8] 孟惠惠, 许厚强, 刘金河, 等. 2014. 三种癌细胞株中Bloom综合征解旋酶(BLM)的表达水平高于正常细胞[J]. 细胞与分子免疫学杂志, 30(06): 649-651. (Meng H H, Xu H Q, Liu J H, et al.2014. The expression level of Bloom syndrome helicase (BLM) in the three cancer cell lines is higher than that of normal cells[J]. Journal of Cellular and Molecular Immunology, 30(06): 649-651.) [9] 史婧. 2017. BLM 解旋酶的酶学特性与DHBN结构研究[D]. 博士学位论文, 西北农林科技大学, 导师: 奚绪光, PP. 1-3. (Shi J.2017. Enzymatic characteristics of BLM helicase and study on DHBN structure[D]. Doctoral dissertation, Northwest A&F University, Supervisor: Xi X G, pp: 1-3.) [10] 王伟, 温英武, 高双友, 等. 2020. LncRNA TPT1-AS1在前列腺癌中的表达及对生物学功能的影响[J]. 中国药师, 23(05): 793-797+803. (Wang W, Weng Y W, Gao S Y, et al.2020. Expression of LncRNA TPT1-AS1 in prostate cancer and its effect on biological function[J]. Chinese Pharmacists, 23(05): 793-797+803.) [11] 王曦, 陈定. 2016. LncRNAs作为miRNA的靶模拟物调节miRNA[J]. 科技创新导报, 13(28): 176-177. (Wang X, Chen D.2016. LncRNAs act as target mimics to regulate mirnas[J]. Science and Technology Innovation Bulletin, 13(28): 176177.) [12] 吴品庚, 张宇曦2018. 长链非编码RNA在前列腺癌中的研究进展[J]. 中华男科学杂志, 24(08): 735-739. (Wu P G, Zhang Y X.2018. Research progress of long noncoding RNA in prostate cancer[J]. Chinese Journal of Andrology, 24(08): 735-739.) [13] 谢淑飞, 郑祥光. 2012. 前列腺癌的CT诊断[J]. 现代泌尿生殖肿瘤杂志, (03): 66-67. (Xie S F, Zheng X G. 2012 CT diagnosis of prostate cancer[J]. Modern Journal of Urogenital Cancer, (03): 66-67.) [14] 许斌, 陈恕求, 刘宁, 等. 2016. 长链非编码RNA LINC01358在前列腺癌组织中的表达及对前列腺癌细胞增殖和迁移的影响[J]. 中华男科学杂志, 22(12): 1083-1087. (Xu B, Chen S Q, Liu N, et al.2016. The expression of long noncoding RNA LINC01358 in prostate cancer tissue and its effect on the proliferation and migration of prostate cancer cells[J]. Chinese Journal of Andrology, 22(12): 1083-1087.) [15] Bachrati C Z, Hickson I D.2003. RecQ helicases suppressors of tumorigenesis and premature aging[J]. Biochemical Journal, 374(3): 577-606. [16] Chen W, Zheng R, Baade P D, et al.2016. Cancer statistics in China[J]. CA: A Cancer Journal for Clinicians, 66(2): 115-132. [17] Esteller M.2011. Non-coding RNAs in human disease[J]. Nature Reviews Genetics. 12(12): 861-874. [18] German J, Roe A M, Leppert M F, et al.1994. Bloom syndrome an analysis of consanguineous families assigns the locus mutated to chromosome band 15q26.1[J]. Proceedings of the National Academy of Sciences of the United States of America. 91(14): 6669-6673. [19] Hangauer M J, Vaughn I W, Mcmanus M T.2013. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncording RNAs[J]. PLoS Genetics, 9(6): el003569. [20] Li J, Zhang Z, Xiong L, et al.2017. Snhg1 lncrna negatively regulates mir-199a-3p to enhance cdk7 expression and promote cell proliferation in prostate cancer[J]. BioChemical and Biophysical Research Communications. 487(1): 146-152. [21] Liu S, Wang L, Li Y, et al.2019. Long noncoding RNA CHRF promotes proliferation and mesenchymal transition (EMT) in prostate cancer cell line PC3 requiring up regulating microRNA-10b[J]. Biological Chemistry. 400(8): 1035-1045. [22] Ma M, Xu H, Liu G, et al.2019. Metabolism induced tumor activator 1 (MITA1), an energy stress inducible long noncoding RNA, promotes hepatocellular carcinoma metastasis[J]. Hepatology. 70(1): 215-230. [23] Matsumoto A, Pasut A, Matsumoto M, et al.2016. mTORC1 and muscle regeneration are regulated by the LINC00961 encoded SPAR polypeptide[J]. Nature, 541(7636): 228-232. [24] Nam Y, Chen C, Gregory RI, et al.2011. Molecular basis for interaction of let-7, MicroRNAs with Lin28. Cell, 147(5): 1080-1091. [25] Okazaki Y, Furuno M, Kasukawa T, et al.2002. Analysis of the mouse transcriptome based on functional annotation of 60770 full length cDNAs[J]. Nature, 420(6915): 563-573. [26] Peng W X, Koirala P, Mo Y Y.2017. LncRNA mediated regulation of cell signaling in cancer[J]. Oncogene. 36(41): 5661-5667. [27] Siegel R L, Miller K D, Jemal A.2018. Cancer statistics[J]. CA: A Cancer Journal for Clinicians, 68(1): 7-30. [28] Wu J, Zhi L, Dai X, et al.2015. Decreased RECQL5 correlated with disease progression of osteosarcoma[J]. BioChemical and Biophysical Research Communications, 467(4): 617-622. [29] Wu M, Huang Y, Chen T, et al.2019. LncRNA MEGA3 in hibits the progression of prostate cancer by modulating miR-9-5p/QKI-5 axis[J]. Journal of Cellular and Molecular Medicine, 23(1): 29-38. [30] Xie C H, Cao Y M, Huang Y, et al.2016. Long non-coding rna tug1 contributes to tumorigenesis of human osteosarcoma by sponging mir-9-5p and regulating pou2f1 expression[J]. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine. 37(11): 15031-15041. [31] Zhang Y, Su X, Kong Z, et al.2017. An androgen reduced transcript of lncrna gas5 promoted prostate cancer proliferation[J]. PLOS ONE, 12(8), e0182305.