Screening and Stability Evaluation of Reference Genes in Uncaria rhynchophylla qRT-PCR Analysis
YU Xiao-Song, WANG Xiao-Hong, LI Xue, JIA Na, SHANGGUAN Li-Yang, QIANG Wei, ZHANG Ming-Sheng*
Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/College of Life Sciences, Guizhou University, Guiyang 550025, China
Abstract:The medicinal components of Uncaria rhynchophylla, rhynchophylline and isorhynchophylline, are regulated by various enzymatic reaction genes. Screening the best internal reference genes in the qRT-PCR system of U. rhynchophylla is of great significance for the study of gene expression of medicinal components in U. rhynchophylla. The present study aimed to select reference genes stably expressed in different tissues, different shading treatments and different ethylene treatments in U. rhynchophylla. U. rhynchophylla was selected as the material, and the expression of 8 reference genes of β-actin (β-act), α-tubulin (α-tub), 18S ribosomal RNA (18S rRNA), translation elongation factor (ef-1), glyceraldehyde-3-phosphate dehydrogenase (gapdh), β-tubulin (β-tub), ribosomal protein (rpl) and ubiquitin-ligase enzyme (ubc) in different tissues and different treatments were analyzed by qRT-PCR. The GeNorm program was used to determine the number of reference genes, and then NormFinder and BestKeeper programs were combined to evaluate the stability of the reference genes. Finally, the geometric mean method was used to integrate the results obtained from different software and obtained comprehensive ranking. The results showed that single reference gene could be used in different tissues and treatments. In different tissues, ef-1 should be selected as the reference gene; under shading treatments, gapdh should be selected as the reference gene; under ethylene treatments, both ubc and β-act could be used as the reference gene. If a relatively stable reference gene is used in multiple expression studies, ubc should be selected. This study provides correction and standardization genes for the expression analysis of related genes in different experimental systems of U. rhynchophylla, and is helpful to improve the accuracy and reliability of the experiments.
[1] 常鹏杰, 申亚梅, 董彬, 等. 2018. 玉兰盐胁迫下qRT-PCR分析中内参基因的筛选[J]. 农业生物技术学报, 26(09): 1611-1620. (Chang P J, Shen Y M, Dong B, et al.2018. Selection of reference gene in Magnolia denudata under salt stress using qRT-PCR[J]. Journal of Agricultural Biotechnology, 26(09): 1611-1620.) [2] 郭军, 张慧, 郭巧生, 等. 2020. 沙氏鹿茸草实时荧光定量PCR内参基因筛选[J]. 中国中药杂志, 45(08): 1887-1892. (Guo J, Zhang H, Guo Q S, et al.2020. Screening of reference genes based on real-time quantitative PCR analysis in Monochasma savatieri[J]. China Journal of Chinese Materia Medica, 45(08): 1887-1892.) [3] 侯维海, 孙鹏, 陈全家, 等. 2010. 地黄实时定量PCR内参基因的筛选[J]. 中国农学通报, 27(17)(Hou W H, Sun P, Chen J Q, et al. 2010. Selection of the reference genes for gene expression studies in Rehmannia glutinosa by real-time quantitative PCR[J]. Chinese Agricultural Science Bulletin, 27(17).) [4] 黄晏, 周文霞, 张永祥, 等. 2018. 钩藤碱及其同分异构体对神经系统作用的研究进展[J]. 药学学报, 53(07): 1017-1022. (Huang Y, Zhou W X, Zhang Y X, et al.2018. Research progresses in pharmacological effects of rhynchophylline and its isomers on nervous system[J]. Acta Pharmaceutica Sinica, 53(07): 1017-1022.) [5] 黄玉香, 谭何新, 于剑, 等. 2016. 药用植物生物碱次生代谢工程研究进展[J]. 中草药, 47(23): 4271-4281. (Huang Y X, Tan H X, Yu J, et al.2016. Advances in study on secondary metabolic engineering of alkaloids in medicinal plants[J]. Chinese Traditional and Herbal Drugs, 47(23): 4271-4281.) [6] 姜婷, 苏乔, 安利佳. 2015. 多重胁迫下玉米实时定量PCR内参基因的筛选与验证[J]. 植物生理学报, 52(9): 1457-1464. (Jiang T, Su Q, An L J.2015. Screening and validation of reference genes of qPCR in maize under multiple stresses[J]. Plant Physiology Journal, 52(9): 1457-1464.) [7] 刘文哲, 牛明月, 李秀云, 等. 2016. 光皮桦实时荧光定量PCR内参基因的筛选[J]. 林业科学, 52(8): 29-37. (Liu W Z, Niu M Y, Li X Y, et al.2016. The selection of reference genes for quantitative PCR in Betula luminifera[J]. Scientia Silvae Sinicae, 52(8): 29-37.) [8] 李雪, 王晓红, 张智仙, 等. 2019. 外施乙烯对钩藤生理及主要药用成分积累的影响[J]. 植物生理学报, 55(09): 1347-1354. (Li X, Wang X H, Zhang Z X, et al.2019. Effects of spraying ethylene on physiology and accumulation of main medicinal components in Uncaria rhynchophylla[J]. Plant Physiology Journal, 55(09): 1347-1354.) [9] 国家药典委员会. 2015. 中华人民共和国药典[M]. 北京: 中国医药科技出版社, pp. 257. (National Pharmacopoeia Commission.2015. Pharmacopoeia of the People's Republic of China[M]. China Medical Science and Technology Press, Beijing, China, pp. 257.) [10] 任锐, 戴鹏辉, 李萌, 等. 2016. 珙桐实时定量PCR内参基因的筛选及稳定性评价[J]. 植物生理学报, 52(10): 1565-1575. (Ren R, Dai P H, Li M, et al.2016. Selection and stability evaluation of reference genes for real-time quantitative PCR in dove tree (Davidia involucrata)[J]. Plant Physiology Journal, 52(10): 1565-1575.) [11] 王健健, 姬拉拉, 邓小红, 等. 2019. 光照强度对钩藤生长及有效成分含量的影响[J]. 中国中药杂志, 44(23): 5118-5123. (Wang J J, Ji L L, Deng X H, et al.2019. Effects of light intensity on growth and content of active components of Uncaria rhynchophyll[J]. China Journal of Chinese Materia Medica, 44(23): 5118-5123.) [12] 魏东, 邓堂刚, 叶茂. 2019. 去泛素化酶与细胞周期调控[J]. 中国细胞生物学学报, 41(06): 1135-1143. (Wei D, Deng T G, Ye M.2019. Deubiquitinase and cell cycle regulation[J]. Chinese Journal of Cell Biology, 41(06): 1135-1143.) [13] 张计育, 黄胜男, 王涛, 等. 2018. 金魁猕猴桃RT-qPCR内参基因的筛选[J]. 上海农业学报, 34(1): 84-88. (Zhang J Y, Huang S N, Wang T, et al.2018. Screening of reference of genes for reverse transcription quantitative real-time PCR in Atinidia diliciosa[J]. Acta Agriculturae Shanghai, 34(1): 84-88.) [14] 张力维, 李勇鹏, 姚瑶, 等. 2015. 香樟延伸因子EF1a基因片段的克隆及表达分析[J]. 中南林业科技大学学报, 35(05): 122-128. (Zhang L W, Li Y P, Yao Y, et al.2015. Cloning and expression analysis of EF1a gene fragment of elongation factor from Cinnamomum camphora[J]. Journal of Central South University of Forestry & Technology, 35(05): 122-128.) [15] 张玉芳, 赵丽娟, 曾幼玲. 2014. 基因表达研究中内参基因的选择与应用[J]. 植物生理学报, 50(08): 1119-1125. (Zhang Y F, Zhao L J, Zeng Y L.2014. Selection and application of reference genes for gene expression studies[J]. Plant Physiology Journal, 50(08): 1119-1125.) [16] 中国科学院《中国植物志》编委会. 1999. 中国植物志[M]. 北京: 科学出版社, pp. 71. (Flora of China Editorial Committee of CAS. 1999. Flora of China[M]. Science Press, Beijing, China, pp. 71.) [17] 周冰, 曹诚, 刘传暄. 2007. 翻译延伸因子1α的研究进展[J]. 生物技术通讯, (2): 281-284. (Zhou B, Cao C, Liu C X. 2007. Advances in research on translation elongation factor 1 alpha[J]. Letters in Biotechnology, (2): 281-284.) [18] 朱友银, 王月, 张弘, 等. 2015. 中国樱桃实时定量PCR (qRT-PCR)内参基因的筛选与鉴定[J]. 农业生物技术学报, 23(05): 690-700. (Zhu Y Y,Wang Y,Zhang H, et al.2015. Selection and characterization of reliable reference genes in Chinese cherry (Prunus pseudocerasus) using quantitative real-time PCR (qRT-PCR)[J]. Journal of Agricultural Biotechnology, 23(05): 690-700.) [19] Andersen C L, Jensen J L, Ørntoft T F, et al.2004. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Reserach, 64(15): 5245-5250. [20] Brunner A M, Yakovlev I A, Strauss S H.2004. Validating internal controls for quantitative plant gene expression studies[J]. BMC Plant Biology, 4(8): 14. [21] Bustin S A.2002. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems[J]. Journal of Molecular Endocrinology, 29(1): 23-39. [22] Carisey A F, Mace E M, Saeed M B, et al.2018. Nanoscale dynamism of actin enables secretory function in cytolytic cells[J]. Current Biology, 28(4): 489-502. [23] Chen R, Mayumi G, Yoshihisa N, et al.2010. Selection of housekeeping genes for transgene expression analysis in Eucommia ulmoides oliver using real-time RT-PCR[J]. Journal of Botany. DOI:10.1155/2010/230961. [24] Czechowski T, Stitt M, Altmann T, et al.2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis[J]. Plant Physiology, 139(1): 5-17. [25] Carvalho K D, Bespalhok Filho J C, Dos Santos T B, et al.2013. Nitrogen starvation, salt and heat stress in coffee (Coffea arabica L.): Identification and validation of new genes for qPCR normalization[J]. Molecular Biotechnology, 53(3): 315-325. [26] Die J V, Román B, Nadal S, et al.2010. Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions[J]. Planta, 232(1): 145-153. [27] Faccioli P, Ciceri G P, Provero P, et al.2007. A combined strategy of 'in silico' transcriptome analysis and web search engine optimization allows an agile identification of reference genes suitable for normalization in gene expression studies[J]. Plant Molecular Biology, 63(5): 679-688. [28] Gutierrez L, Mauriat M, Guenin S, et al.2008. The lack of a systematic validation of reference genes: A serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants[J]. Plant Biotechnology Journal, 6(6): 609-618. [29] Hu R, Fan C M, Li H Y, et al.2009. Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR[J]. BMC Molecular Biology, 10(9): 93. [30] Lepelletier Y, Moura I, Réda Hadj-Slimane, et al.2006. Immunosuppressive role of semaphorin-3A on T cell proliferation is mediated by inhibition of actin cytoskeleton reorganization[J]. European Journal of Immunology, 36(7): 1782-1793. [31] Pfaf? M W, Tichopad A, Prgomet C, et al.2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations[J]. Biotechnology Letters, 26(6): 509-515. [32] Remans T, Smeets K, Opdenakker K, et al.2008. Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations[J]. Planta, 227(6): 1343-1349. [33] Shingnori O, Amane M, Tadahiko M.2003. Effect of irradiance on the partitioning of assimilated carbon during the early phase of grain filling in rice[J]. Annals of Botany, 92(9): 357-364. [34] Vandesompele J, de Preter K, Pattyn F, et al.2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 3(7): 0034. [35] van Guilder H D, Vrana K E, Freeman W M.2008. Twenty-five years of quantitative PCR for gene expression analysis[J]. Biotechniques, 44(5): 619-626. [36] Wang H, Wang F, Zheng F, et al.2016. Ethylene-insensitive mutants of Nicotiana tabacum exhibit drought stress resistance[J]. Plant Growth Regulation, 79(8): 107-117. [37] Xiao X L, Ma J B, Wang J R, et al.2015. Validation of suitable reference genes for gene expression analysis in the halophyte Salicornia europaea by real-time quantitative PCR[J]. Frontiers in Plant Science, 5(2): 788. [38] Yuan J, Meng J, Liang X, et al.2017. Organic molecules from biochar leacheates have a positive effect on rice seedling cold tolerance[J]. Frontiers in Plant Science, 8(1624): 1-13. [39] Yueai L, Chenlu Z, Hai L, et al.2014. Validation of potential reference genes for qPCR in maize across abiotic stresses, hormone treatments, and tissue types[J]. PLOS ONE, 9(5): e95445.