|
|
Genome Wide Identification and Expression Analysis of the WRKY Gene Family in Safflower (Carthamus tinctorius) |
QIN Juan, LU Wei-Wen, LI Bin, LI Chen, WANG Pei-Ya*, WANG Zhi-Ye* |
Laboratory of Microbial Resources Exploitation and Application of Gansu Province/Characteristic microorganisms and plant resource innovation International Scientific and Technological Cooperation Base of Gansu, Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, China |
|
|
Abstract WRKY transcription factors are a class of transcription factors that are unique and conserved in plants, playing important regulatory roles in plant growth, development, and secondary metabolism. To explore the WRKY genes involved in the regulation of flavonoid metabolism in safflower (Carthamus tinctorius), the WRKY family genes of safflower, were identified and analyzed at the genome level in this study. Utilizing the genome and transcriptome data of safflower, this study identified 87 CtWRKY genes, distributing across 12 chromosomes. Subcellular localization prediction showed that the vast majority (85) of CtWRKY family members were located in the nucleus. Evolutionary analysis showed that CtWRKY genes could be categorized into 3 groups (GroupⅠ/Ⅱ/Ⅲ) and 5 subgroups (GroupⅡa/b/c/d/e) in GroupⅡ, with the highest number of WRKYs (52.87%). The analysis of protein motif showed that all CtWRKY proteins contained a highly conserved motif WRKYGQK. Collinearity analysis indicated that there were 39 pairs of segmental duplication genes in safflower CtWRKY gene family. RNA-seq analysis showed that there were obvious differences in the expression of CtWRKY gene family members in different tissues. Furthermore, the transcriptional profiles of 9 CtWRKY genes highly expressed in full bloom petals were investigated using qRT-PCR analysis. Results showed that a total of 9 CtWRKY genes were differentially expressed in response to abscisic acid (ABA) and methyl jasmonate (MeJA) treatment. This study provides a basis for further elucidating the function of WRKY transcription factors in the biosynthesis of flavonoids in safflower.
|
Received: 28 November 2024
|
|
Corresponding Authors:
*wpeiya@163.com; zhiye_wang@sina.com
|
|
|
|
[1] 程水源, 王燕, 费永俊, 等. 2004. 提高银杏叶黄酮含量的措施及其调控机理的研究(英文)[J]. 果树学报, (02):116-119. (Chen S Y, Wang Y, Fei Y J, et al. 2004. Studies on the effects of different treatments on flavonoids contents in Ginkgo biloba leaves and their regulating mechanism[J]. Journal of Fruit Science, (02):116-119.) [2] 郭志英, 李卿, 吴循循, 等. 2022. 马蓝WRKY转录因子家族生物信息学及表达特征分析[J]. 药学学报, 57(9): 2864-2875. (Guo Z Y, Li Q, Wu X X, et al.2022. Bioinformatics and expressional analysis of WRKY transcription factor family in Baphicacanthus cusia[J]. Acta Pharmaceutica Sinica, 57(9): 2864-2875.) [3] 李馨蕊, 刘娟, 彭成, 等. 2021. 红花化学成分及药理活性研究进展[J]. 成都中医药大学学报, 44(01): 102-112. (Li X R, Liu J, Peng C, et al.2021. Phytochemistry and Pharmacology of Carthamus tinctorius[J]. Journal of Chengdu University of TCM, 44(01): 102-112.) [4] 刘秀明, 杨文婷, 陈凯, 等. 2014. 红花不同品种和不同花期黄色素含量分析[J]. 时珍国医国药, 25(09):2233-2235. (Analysis of safflor yellow in different varieties and flower periods[J]. Lishizhen Medicine and Materia Medica Research, 25(09): 2233-2235.) [5] 王刚, 章正仁, 王一非, 等. 2020. 红花CtWD40转录因子家族基因的生物信息学分析[J]. 中国中药杂志, 45(14):34323440. (Wang G, Zhang Z R, Wang Y F, et al.2020. Bioinformatics analysis of safflower WD40 transcription factor family genes[J]. China Journal of Chinese Materia Medica, 45(14): 34323440.) [6] 王佐梅, 肖洪彬, 李雪莹, 等. 2021. 中药红花的药理作用及临床应用研究进展[J]. 中华中医药杂志, 36(11): 6608-6611. (Wang Z M, Xiao H B, Li X Y, et al.2021. Research progress on pharmacological actions and clinical applications of Carthami Flos[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 36(11): 6608-6611.) [7] Abdullah-Zawawi M R, Ahmad-Nizammuddin N F, Govender N, et al.2021. Comparative genome-wide analysis of WRKY, MADS-box and MYB transcription factor families in Arabidopsis and rice[J]. Science Report, 11(1): 19678. [8] Abouzeid S, Beutling U, Surup F, et al.2017. Treatment of Vinca minor leaves with methyl jasmonate extensively alters the pattern and composition of indole alkaloids[J]. Journal of Natural Products, 80: 2905-2909. [9] Chen J, Wang J, Wang R, et al.2020. Integrated metabolomics and transcriptome analysis on flavonoid biosynthesis in safflower (Carthamus tinctorius L.) under MeJA treatment[J]. BMC Plant Biology, 20(1): 353. [10] Di P, Wang P, Yan M, et al.2021. Genome-wide characterization and analysis of WRKY transcription factors in Panax ginseng[J]. BMC Genomics, 22(1): 834. [11] Fan Z, Zhu Y, Kuang W, et al.2024. The 14-3-3 protein GRF8 modulates salt stress tolerance in apple via the WRKY18-SOS pathway[J]. Plant Physiology, 194(3): 1906-1922. [12] Grunewald W, De Smet I, Lewis D R, et al.2012. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis[J]. Proceedings of the National Academy of Sciences of the USA, 109(5): 1554-1559. [13] Hashemi S M, Naghavi M R, Ghorbani M, et al.2021. Effects of abiotic elicitors on expression and accumulation of three candidate benzophenanthridine alkaloids in cultured greater celandine cells[J]. Molecules, 26: 1395. [14] Ho T T, Murthy H N, Park S Y.2020. Methyl jasmonate induced oxidative stress and accumulation of secondary metabolites in plant cell and organ cultures[J]. International Journal of Molecular Sciences, 21: 716 [15] Johnson C S, Kolevski B, Smyth D R.2002. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor[J]. Plant Cell, 14(6): 1359-1375. [16] Khosrowshahi Z T, Ghassemi-Golezani K, Salehi-Lisar S Y, et al.2020. Changes in antioxidants and leaf pigments of safflower (Carthamus tinctorius L.) affected by exogenous spermine under water deficit[J]. Biologia Futura, 71(3): 313-321. [17] Li C, Li D Q, Shao F J, et al.2015. Molecular cloning and expression analysis of WRKY transcription factor genes in Salvia miltiorrhiza[J]. BMC Genomics, 16: 200. [18] Li W, Xiao N, Wang Y, et al. 2023. Genome-wide identification, evolutionary and functional analyses of WRKY family members in Ginkgo biloba[J]. Genes (Basel), 14(2): 343. [19] Lin W J, Huang W, Ning S J, et al.2019. Comparative transcriptome analyses revealed differential strategies of roots and leaves from methyl jasmonate treatment Baphicacanthus cusia (Nees) Bremek and differentially expressed genes involved in tryptophan biosynthesis[J]. PLOS ONE, 14: e0212863. [20] Qiu D Y, Xiao J, Ding X H, et al.2007. OsWRKY13 mediates rice disease resistance by regulating defense-related genes insalicylate-and jasmonate-dependent signaling[J]. Molecular Plant-microbe Interactions, 20(5): 492-499. [21] Ren C, Chen C, Dong S, et al.2022. Integrated metabolomics and transcriptome analysis on flavonoid biosynthesis in flowers of safflower (Carthamus tinctorius L.) during colour-transition[J]. PeerJ, 10: e13591. [22] Schmittgen T D, Livak K J.2008. Analyzing real-time PCR data by the comparative C(T) method[J]. Nature Protocols, 3(6): 1101-1108. [23] Suttipanta N, Pattanaik S, Kulshrestha M, et al.2011. The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus[J]. Plant Physiology, 157(4): 2081-2093. [24] Villalobos-Gonzalez L, Pena-Neir A A, Ibanez F, et al.2016. Long-term effects of abscisic acid (ABA) on the grape berry phenylpropanoid pathway: Gene expression and metabolite content[J]. Plant Physiology and Biochemistry, 105: 213-223. [25] Wang H, Xu Q, Kong Y H, et al.2014. Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1:1 expression in response to phosphate starvation[J]. Plant Physiology, 164(4): 2020-2029. [26] Wang M Q, Huang Q X, Lin P, et al.2020. The overexpression of a transcription factor gene VbWRKY32 enhances the cold tolerance in Verbena bonariensis[J]. Front Plant Science, 10:1746. [27] Wang Q, Wang M, Zhang X, Hao B, et al.2011. WRKY gene family evolution in Arabidopsis thaliana[J]. Genetica, 139(8): 973-983. [28] Xu Y H, Sun P W, Tang X L, et al.2020. Genome-wide analysis of WRKY transcription factors in Aquilaria sinensis (Lour.) Gilg[J]. Scientific Reports, 10: 3018. [29] Yamada Y, Shimada T, Motomura Y, et al.2017. Modulation of benzylisoquinoline alkaloid biosynthesis by heterologous expression of CjWRKY1 in Eschscholzia californica cells[J]. PLOS ONE, 12: e0186953. [30] Yang Z, Yang J, Jia Y, et al.2009. Pharmacokinetic properties of hydroxysafflor yellow A in healthy Chinese female volunteers[J]. Journal of Ethnopharmacology, 124(3): 635-638. [31] Yao L, Wang J, Sun J C, et al.2020. A WRKY transcription factor, PgWRKY4X, positively regulates ginsenoside biosynthesis by activating squalene epoxidase transcription in Panax ginseng[J]. Industrial Crops and Products, 154: 112671. [32] Yu D, Chen C, Chen Z.2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J]. Plant Cell, 13(7): 1527-1540. [33] Yu Y, Wang N, Hu R, et al.2016. Genome-wide identification of soybean WRKY transcription factors in response to salt stress[J]. Springerplus, 5(1): 920. [34] Zhu H B, Wang Z H, Ma C J, et al.2003. Neuroprotective effects of hydroxysafflor yellow A: In vivo and in vitro studies[J]. Planta Medica, 69(5): 429-433. |
|
|
|