|
|
Identification of the Sugar Beet (Beta vulgaris) Acetolactate Synthase Gene Family and Its Response to Herbicides |
XIANG Xing-Chun, WANG Hao, YU Xin-Xin, FU Jing-Jing, WANG Xin, LIU Da-Li* |
College of Modern Agriculture and Ecological Environment, Heilongjiang University/National Beet Medium-term Gene Bank/Key Laboratory of Sugar Beet Genetics and Breeding of Heilongjiang Province, Harbin 150080, China |
|
|
Abstract Weeds are a major factor affecting the yield and quality of sugar beet (Beta vulgaris). Acetolactate synthase (ALS) inhibitor herbicides are widely used in agricultural weed management due to their high efficiency, low dosage, and safety. To comprehensively investigate the ALS gene family in sugar beet and explore their potential functions under ALS-inhibitor herbicide stress, this study performed a genome-wide identification of ALS family members using bioinformatics approaches. The physicochemical properties, evolutionary relationships, cis-acting regulatory elements and chromosomal locations of the identified genes were systematically analyzed. Additionally, qRT-PCR combined with morphological traits and photosynthetic parameters was used to examine the transcriptional expression patterns of BvALS genes under herbicide stress. A total of 7 BvALS gene family members and their transcript variants were identified in the sugar beet genome. The predicted BvALS proteins had molecular weights ranging from 51. 305~81.867 kD and theoretical isoelectric points ranging from 5.64 to 9.41. Most members were predicted to be stable proteins localized to the chloroplast. Phylogenetic analysis indicated that the BvALS family members were closely related to ALSs in Arabidopsis thaliana and Spinacia oleracea. A total of 10 conserved Motifs were identified, with most genes containing Motif 7. Notably, BvRB_5g124450, BvRB_2g027380, BvRB_5g103060, and BvRB_8g181940 contained all 3 conserved domains (TPP enzyme N, TPP enzyme M, and TPP enzyme C). These genes were distributed across 5 chromosomes and 2 scaffold regions. Promoter analysis revealed that BvALS genes may participate in various stress response pathways. Under ALS-inhibitor herbicide treatment, all BvALS genes were transcriptionally upregulated, with BvRB_5g103060 showing the most significant induction (3.2 times) higher than the control. These findings suggest that BvRB_5g103060 may play a critical role in the herbicide resistance mechanism of sugar beet, and provide theoretical basis for further studies on the biological function of BvALS genes in response to herbicide stress.
|
Received: 24 February 2025
|
|
Corresponding Authors:
*daliliu_hlju@163.com
|
|
|
|
[1] 戴艳丽, 刘倩纯, 张雨菲, 等. 2019. 大葱ALS基因的克隆及其CRISPR/Cas9载体的构建[J]. 分子植物育种, 17(16): 5314-5319. (Dai Y L, Liu Q C, Zhang Y F, et al. Cloning of onion ALS gene and construction of its CRISPR/Cas9 vector[J]. 2019. Molecular Plant Breeding, 17(16): 5314-5319.) [2] 胡茂龙, 龙卫华, 高建芹, 等. 2018. 油菜乙酰乳酸合酶基因BnALS3的亚细胞定位、原核表达及其酶活分析[J]. 中国油料作物学报, 40(03): 309-317. (Hu M L, Long W H, Gao J Q, et al.2018. Subcellular localisation, prokaryotic expression and its enzyme activity analysis of the oilseed rape acetolactate synthase gene BnALS3[J]. Chinese Journal of Oil Crops, 40(03): 309-317.) [3] 李佳. 不同类型除草剂对甜菜生长和杂草防除效果的影响[D]. 2021. 硕士学位论文, 内蒙古农业大学, 导师: 李国龙, pp:1-46. (Li J. Effects of different types of herbicides on sugar beet growth and weed control[D]. 2021. Thesis for M. S., Inner Mongolia Agricultural University, Supervisor: Li G L, pp. 1-46.) [4] 刘长乐, 郭月, 李芳芳, 等. 2022. 抗ALS类除草剂作物种质创制与利用研究进展[J]. 植物遗传资源学报, 23(02): 333-345. (Liu C Y, Guo Y, Li F F, et al.2022. Progress in the creation and utilisation of ALS herbicide-resistant crop germplasm[J]. Journal of Plant Genetic Resources, 23(02): 333-345. [5] 马倩. 利用CRISPR/Cas9技术编辑紫花苜蓿CCoAOMT及ALS基因的研究[D]. 2021. 硕士学位论文, 兰州大学, 导师: 张吉宇. pp: 18-43. (Ma Q. Editing of CCoAOMT and ALS genes in alfalfa using CRISPR/Cas9 technology[D]. 2021. Thesis for M. S., Lanzhou University, Supervisor: Zhang J Y, pp. 18-43.) [6] 宋松泉, 唐翠芳, 姜孝成, 等. 2024. 种子休眠与萌发的关键调控因子DOG1的研究进展[J]. 植物科学学报, 42(02): 254-265. (Song S Q, Tang C F, Jiang X C, et al.2024. Progress of DOG1, a key regulator of seed dormancy and germination[J]. Journal of Plant Science, 42(02): 254-265.) [7] 王芳权, 杨杰, 范方军, 等. 2018. 水稻抗咪唑啉酮类除草剂基因ALS功能标记的开发与应用[J]. 作物学报, 44(3): 324-331. (Wang F Q, Yang J, Fan F J, et al.2018. Development and application of ALS functional markers for the rice imidazolinone herbicide resistance gene[J]. Crop Journal , 44(3):324-331.) [8] 王建国. 乙酰乳酸合成酶及其抑制剂研究新进展[J]. 2014. 农药学学报, 16(4):367-374. (Wang J G. New progress in the study of acetolactate synthase and its inhibitors[J]. 2014. Journal of Pesticide Science, 16(4): 367-374.) [9] 辛洁, 徐小博, 王磊, 等. 2019. ALS抑制剂类除草剂的抗性研究概述[J]. 安徽农业科学, 47(04): 18-21. (Xin J, Xu X B, Wang L, et al.2019. Overview of resistance studies of ALS inhibitor herbicides[J]. Anhui Agricultural Science, 47(04): 18-21.) [10] 郑培忠, 沈健英. 2009. 乙酰乳酸合成酶抑制剂的种类及其耐药性研究进展[J]. 杂草科学, (02): 4-8. (Zheng P Z, Shen J Y. 2009. Progress of acetolactate synthase inhibitors and their resistance[J]. Weed Science , (02): 4-8.) [11] 朱振兴, 李丹, 王春语. 2017. 利用玉米乙酰乳酸合成酶基因ALS点突变处理培育抗除草剂高粱[J]. 分子植物育种, 15(11): 4563-4572. (Zhu Z X, Li D, Wang C Y.2017. Breeding herbicide-resistant sorghum using ALS point mutation treatment of maize acetolactate synthase gene[J]. Molecular Plant Breeding, 15(11): 4563-4572.) [12] Chen L, Gu G, Wang C, et al.2021. Trp548Met mutation of acetolactate synthase in rice confers resistance to a broad spectrum of ALS-inhibiting herbicides[J]. The Crop Journal, 9(4): 750-758. [13] Dong H, Wang D, Bai Z, et al.2020. Generation of imidazolinone herbicide resistant trait in Arabidopsis[J]. The Public Library of Science, 15(5): e0233503. [14] Dong H, Yong H, Kejian W.2021. The development of herbicide resistance crop plants using CRISPR/Cas9-mediated gene editing[J]. Genes, 12(6): 912. [15] Gage K L, Krausz R F, Walters SA.2019. Emerging challenges for weed management in herbicide-resistant crops[J]. Agriculture, 9(8): 180. [16] Gaines T A, Duke S O, Morran S, et al.2020. Mechanisms of evolved herbicide resistance[J]. Journal of Biological Chemistry, 295(30): 10307-10330. [17] Im G, Choi D.2021. AIP1, Encoding the small subunit of acetolactate synthase, is partially responsible for resistance to hypoxic stress in Arabidopsis thaliana[J]. Plants, 10(11): 2251. [18] Ji X, Tang J, Zhang J.2022. Effects of salt stress on the morphology, growth and physiological parameters of Juglansmicrocarpa L. seedlings[J]. Plants, 11(18): 2381. [19] Jursík M, Soukup J, Kolářová M.2020. Sugar beet varieties tolerant to ALS-inhibiting herbicides: A novel tool in weed management[J]. Crop Protection, 137: 105294. [20] Li J, Li M, Gao X, et al.2017. A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS-inhibiting herbicides in crabgrass (Digitaria sanguinalis)[J]. Pest Management Science, 73(12): 2538-2543. [21] Löbmann A, Christen O, Petersen J.2019. Development of herbicide resistance in weeds in a crop rotation with acetolactate synthase‐tolerant sugar beets under varying selection pressure[J]. Weed Research, 59(6): 479-489. [22] Rey-caballero J, Menéndez J, Osuna M D, et al.2017. Target-site and non-target-site resistance mechanisms to ALS inhibiting herbicides in Papaver rhoeas[J]. Pesticide Biochemistry and Physiology, 138: 57-65. [23] Shimizu M, Goto M, Hanai M, et al.2008. Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco[J]. Plant Physiology, 147(4): 1976-1983. [24] Tanigaki S, Uchino A, Okawa S, et al.2021. Gene expression shapes the patterns of parallel evolution of herbicide resistance in the agricultural weed Monochoria vaginalis[J]. New Phytologist, 232(2): 928-940. [25] Tian S W, Jiang L J, Cui X X, et al.2018. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing[J]. Plant Cell Reports, 37(9): 1353-1356. [26] Torra J, Alcantara-de L, Cruz R.2022. Molecular mechanisms of herbicide resistance in weeds[J]. Genes, 13(11): 2025. [27] Wu J, Chen C, Xian G, et al.2020. Engineering herbicide‐resistant oilseed rape by CRISPR/Cas9‐mediated cytosine base-editing[J]. Plant Biotechnology Journal, 18(9): 1857. |
|
|
|