|
|
Study on Paternal Genetic Diversity of Cattle (Bos taurus) in Qinghai-Tibet Plateau |
YAN Hui-Xuan1, YAO Ting-Ting1, CAO Yi-Fan1, LI Xin-Yi1, CIREN Luo-Bu2, SUOLANG Qu-Ji2, NIMA Cang-Jue2, DANZENG Luo-Sang2, SILANG Wang-Mu2, LEI Chu-Zhao1, BASANG Zhu-Zha2,*, CHEN Ning-Bo1,* |
1 College of Animal Science and Technology/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling 712100, China; 2 Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China |
|
|
Abstract The Qinghai-Tibet plateau (QTP) cattle (Bos taurus) is a rare local genetic resource of cattle in China plateau region due to its unique geographical environment and numerous breeds. To analyze the paternal genetic diversity and phylogenetic relationship of QTP cattle, this study integrated the whole genome re-sequencing data of 77 male QTP cattle and scanned the single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs) in the single-copy gene region of the X-degenerate region of the Y chromosome. A total of 2 672 Y-SNPs and 712 Y-INDELs were identified. Based on Y-SNPs, 30 Y-SNPs haplotypes of QTP cattle were defined in this study, among which hap10 was the dominant haplotype, accounting for 16.88%. It was found that QTP cattle belonged to 6 Y haplogroups/sub-haplogroups (Y1, Y2A, Y2B, Y3A2, Y3B1 and Y3B4), among which Y2B (59.74%) was the main haplogroup, individuals of QTP cattle were mainly concentrated in the Y2B haplogroup. The analysis based on Y-INDELs was also consistent with Y-SNPs. The haplotype diversity of Y-SNPs in the QTP cattle population was 0.973±0.006, and the nucleotide diversity was 0.237±0.046. This study confirmed that QTP cattle had 6 paternal origins, including 3 taurine cattle (B. taurus taurus) and 3 indicine cattle (B. taurus indicus) paternal origins, clarified the high paternal genetic diversity of QTP cattle. This study provides a theoretical basis for the protection, development and utilization of QTP cattle.
|
Received: 15 October 2024
|
|
Corresponding Authors:
*ningbochen@nwafu.edu.cn; 157493385@qq.com
|
|
|
|
[1] 白佳灵, 王会, 钟金城, 等. 2021. 西藏牛与三江牛心脏组织低氧适应相关circRNA分析[J]. 农业生物技术学报, 29(06): 1121-1131. (Bai J L, Wang H, Zhong J C, et al.2021. Analysis of hypoxia-adaptation related circRNA in heart tissues of Tibetan cattle (Bos taurus) and Sanjiang Cattle (Bos taurus)[J]. Journal of Agricultural Biotechnology, 29(06): 1121-1131.) [2] 陈嘉磊, 夏小婷, 肖正中, 等. 2022. 蒙古牛线粒体DNA全基因组遗传多样性与起源研究[J]. 中国牛业科学, 48(03): 6-9. (Chen J L, Xia X T, Xiao Z Z, et al.2022. The genetic diversity of mitochondrial DNA genome of Mongolian cattle[J]. China Cattle Science, 48(03): 6-9.) [3] 陈宁博. 2019. 全基因组重测序分析揭示东亚家牛的祖先与多重适应性基因渗入[D]. 博士毕业论文, 西北农林科技大学, 导师: 雷初朝, pp. 10-13. (Chen N B.2019. Whole-genome Reseouencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia[D]. Thesis for Ph D, North West Agriculture and Forestry University, Supervisor: Lei C Z, pp. 10-13.) [4] 陈顺港, 高玉, 陈宁博, 等. 2024. 青藏高原牦牛驯化的考古学与遗传学研究进展及展望[J]. 科学通报, 69(11): 1417-1428. (Chen S G, Gao Y, Chen N B, et al.2024. Review and prospect of archaeological and genetic research on yak domestication on the Tibetan plateau[J]. Chinese Science Bulletin, 69(11): 1417-1428.) [5] 顿珠加才, 张俸伟, 夏小婷, 等. 2017. 西藏牛和日喀则驼峰牛Y-SNPs遗传多样性及父系起源研究[J]. 中国牛业科学, 43(06): 9-11. (Dunzhu J C, Zhang F W, Xia X T, et al.2017. Genetic diversity and paternal origin of Y-SNP markers in Tibetan cattle and Shigatse humped cattle[J]. China Cattle Science, 43(06): 9-11.) [6] 黄钧瑶, 牛雅楠, 张园园. 2020. 2000—2019年我国畜牧业发展研究热点及前沿分析——基于Citespace的知识图谱量化研究[J]. 农业科学研究, 41(04): 49-54. (Huang J Y, Niu Y N, Zhang Y Y, et al.2020. Analyzing development of animal husbandry research hotspot and frontier from 2000 to 2019——Research on knowledge map quantification based on Citespace[J]. Journal of Agricultural Sciences, 41(04): 49-54.) [7] 乐祥鹏. 2014. Y染色体遗传变异及其与公牛繁殖性能的关系研究[D]. 博士毕业论文, 西北农林科技大学, 导师: 雷初朝, pp. 1-24. (Yue X P.2014. Genetic variations of Y chromosome and their associations with male fertility in cattle[D]. Thesis for Ph D, North West Agriculture and Forestry University, Supervisor: Lei C Z, pp. 1-24.) [8] 李秀良, 张俸伟, 曹艳红, 等. 2019. 南丹牛Y-SNPs与Y-STRs遗传多样性研究[J]. 中国牛业科学, 45(02): 26-28. (Li X L, Zhang F W, Cao Y H, et al.2019. Genetic diversity of Y-SNPs and Y-STRs in Nandan cattle[J]. China Cattle Science, 45(02): 26-28.) [9] 马志杰, 夏小婷, 陈生梅, 等. 2018. 基于Y染色体ZFY-10标记多态性探究柴达木黄牛父系支系组成和起源[J]. 中国农业大学学报, 23(06): 70-76. (Ma Z J, Xia X T, Chen S M, et al.2018. Explore the patrilineal branches and origin of Qaidam cattle based on the polymorphism of Y chromosome ZFY-10 marker[J]. Journal of China Agricultural University, 23(06): 70-76.) [10] 文际坤, 俞英, 赵开典, 等. 1996. 云南文山牛和迪庆牛mtDNA的多态性研究[J]. 畜牧兽医学报, (01): 94-96. (Wen J K, Yu Y, Zhao K D, et al. 1996. Study on the mitochondrial DNA Polymorphism in wenshan yellow cattle and diqing yellow cattle in yunnan[J]. Acta Veterinaria et Zooiechnica Sinica, (01): 94-96.) [11] 俞英, 文际坤, 朱芳贤, 等. 1996. 云南文山黄牛和迪庆黄牛的遗传多样性比较研究[J]. 黄牛杂志, 22(S1): 50-55. (Yu Y, Wen J K, Zhu F X, et al.1996. Comparative study on genetic diversity of Wenshan cattle and Diqing cattle in Yunnan[J]. China Cattle Science, 22(S1): 50-55.) [12] 张俸伟. 2024. 中国地方黄牛大规模基因组遗传变异与参考面板构建[D]. 博士毕业论文, 西北农林科技大学, 导师: 雷初朝, pp. 1-12. (Zhang F W.2024. Large-scale genetic variation and refcrencc panel construction of Chinese cattle[D]. Thesis for Ph D, North West Agriculture and Forestry University, Supervisor: Lei C Z, pp. 1-12.) [13] 张佳琳, 姚婷婷, 马伟东, 等. 2024. 甘孜藏牛mtDNA基因组遗传多样性分析[J]. 中国牛业科学, 50(01): 5-8. (Zhang J L, Yao T T, Ma W D, et al.2024. Genetic diversity of mtDNA genome in Ganzi Tibetan cattle[J]. China Cattle Science, 50(01): 5-8.) [14] 赵晓诚. 2018. 黄牛Y染色体单倍型组新SNPs标记的开发与应用[D]. 硕士毕业论文, 西北农林科技大学, 导师: 雷初朝, pp. 1-11. (Zhao X C.2018. Development and application of new SNP markers of bovine Y chromosome haplogroups[D]. Thesis for M D, North West Agriculture and Forestry University, Supervisor: Lei C Z, pp. 1-11.) [15] Bolger A M, Lohse M, Usadel B.2014. Trimmomatic: A flexible trimmer for illumina sequence data[J]. Bioinformatics, 30(15): 2114-2120. [16] Cao Y H, Xia X T, Hou J W, et al.2019. Y-chromosomal haplogroup distributions in Chinese cattle[J]. Animal Genetics, 50(4): 412-413. [17] Chen N B, Cai Y D, Chen Q M, et al.2018. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia[J]. Nature Communications, 9(1): 2337. [18] Chen N B, Ren L L, Du L Y, et al.2020. Ancient genomes reveal tropical bovid species in the Tibetan Plateau contributed to the prevalence of hunting game until the late Neolithic[J]. Proceedings of the National Academy of Sciences of the USA, 117(45): 28150-28159. [19] Chen N B, Xia X T, Hanif Q, et al.2023. Global genetic diversity, introgression, and evolutionary adaptation of indicine cattle revealed by whole genome sequencing[J]. Nature Communications, 14(1): 7803. [20] Chen S G, Ren L L, Gao Y, et al.2024. Evidence of hybridization of cattle and aurochs on the Tibetan Plateau ~3750 years ago[J]. Science Bulletin, 69(18): 2825-2828. [21] Danecek P, Auton A, Abecasis G, et al.2011. The variant call format and VCFtools[J]. Bioinformatics, 27(15): 2156-2158. [22] Edwards C J, Ginja C, Kantanen J, et al.2011. Dual origins of dairy cattle farming--evidence from a comprehensive survey of European Y-chromosomal variation[J]. PLOS ONE, 6(1): e15922. [23] Houtgast E J, Sima V M, Bertels K, et al.2018. Hardware acceleration of bwa-mem genomic short read mapping for longer read lengths[J]. Computational Biology and Chemistry, 75: 54-64. [24] Li R, Zhang X M, Campana M G, et al.2013. Paternal origins of Chinese cattle[J]. Animal Genetics, 44(4): 446-449. [25] Li R, Yang P, Li M, et al.2021. A Hu sheep genome with the first ovine Y chromosome reveal introgression history after sheep domestication[J]. Science China Life Sciences, 64(7): 1116-1130. [26] Librado P, Rozas J.2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 25(11): 1451-1452. [27] Lyu Y, Wang F W, Cheng H J, et al.2024. Recent selection and introgression facilitated high-altitude adaptation in cattle[J]. Science Bulletin, 69(21): 3415-3424. [28] McKenna A, Hanna M, Banks E, et al.2010. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research, 20(9): 1297-1303. [29] Pérez-Pardal L, Sánchez-Gracia A, Álvarez I, et al.2018. Legacies of domestication, trade and herder mobility shape extant male zebu cattle diversity in South Asia and Africa[J]. Scientific Reports, 8(1): 18027. [30] Tamura K, Stecher G, Kumar S.2021. MEGA11: Molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 38(7): 3022-3027. [31] Xia X T, Yao Y, Li C, et al.2019. Genetic diversity of Chinese cattle revealed by Y-SNP and Y-STR markers[J]. Animal Genetics, 50(1): 64-69. [32] Xia X T, Qu K X, Wang Y, et al.2023. Global dispersal and adaptive evolution of domestic cattle: A genomic perspective[J]. Stress Biology, 3(1): 8-20. |
|
|
|