|
|
PLAG1 Gene Polymorphism and Its Association Analysis with Growth Performance in Jiangquan Black Pigs (Sus scrofa) |
MA Xiao-Yan1,2, WANG Wen-Wen1,2, ZHENG Feng-Ling2, LIU Hui-Xin2, XU Fei2, CHEN Wei1, ZENG Yong-Qing1, TANG Hui1,2,* |
1 Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China; 2 College of Animal Science & Technology, Shandong Agricultural University, Taian 271018, China |
|
|
Abstract Plemorphic adenoma gene 1 (PLAG1) plays an important role in regulating the growth and development of livestock and poultry. The purpose of this study was to investigate the relationship between SNP of PLAG1 gene and growth performance in Jiangquan black pig, Jiangquan black pigs weighing about 100 kg were used as research materials. PLAG1 gene mutations in 277 Jiangquan black pigs were detected by Mass ARRAY technology, and the association between SNP and growth traits was analyzed. The results showed that there were 3 SNP in the 5' regulatory region of PLAG1 genes, and 1 in the 3' regulatory region. The polymorphic information content (PIC) of g.75645278A>T and g.75693827A>G sites was 0.35, indicating moderate polymorphism (0.25<PIC<0.50). g.75686279G>A and g.75686320T>C sites showed low polymorphism (PIC<0.25). The genetic analysis showed that only g.75686279G>A locus was in Hardy-Weinberg equilibrium, and the other loci were significantly deviated from Hardy-Weinberg equilibrium (P<0.05). The results of linkage disequilibrium analysis and growth trait correlation showed that the g.75645278A>T and g.75693827A>G sites were completely linked, and had extremely significant effects on days to 100 kg (D100), chest circumference and abdominal circumference (P<0.01). In g.75645278A>T sites, AA individuals with D100 were significantly higher than TT and TA individuals (P<0.05). Chest and abdominal girth of TT and TA individuals were significantly higher than those of AA individuals (P<0.05). Four dominant haplotypes (GCA, GTG, GTA, ATG) and 7 diplotypes were constructed with the loci g.75686279G>A, g.75686320T>C and g.75693827A>G. The 7 combined genotypes had significant effects on D100 (P<0.05), and had extremely significant effects on chest and abdominal circumference (P<0.01). There was extremely significant interaction between haplotype GCA and ATG in chest and abdominal circumference (P<0.01), and significant interaction between haplotype GCA and ATG in body height (P<0.05). There was significant interaction between haplotype GTG and ATG on back height traits (P<0.05). In summary, SNP of PLAG1 gene locus are significantly correlated with growth performance of Jiangquan black pigs, and g.75645278A>T and g.75693827A>G sites could be used as candidate molecular marker sites for growth performance of Jiangquan black pigs. This study provides theoretical support for the breeding of Jiangquan black pigs.
|
Received: 07 August 2023
|
|
Corresponding Authors:
* tanghui@sdau.edu.cn
|
|
|
|
[1] 陈辉. 2019. 猪重要经济性状选择的遗传进展[J]. 猪业科学, 36(01): 116-118. (Chen H.2019. Genetic progress in selection of important economic traits in pigs[J]. Swine Industry Science, 36(01): 116-118.) [2] 范家萌. 2016. NR6A1、PLAG1、LCORL基因在民猪群体内的单倍型及连锁不平衡分析[D]. 硕士学位论文, 东北农业大学, 导师: 刘娣, pp. 49-50. (Fan J M.2016. The studies on the haplotypes of NR6A1、PLAG1 and LCORL and the association on Min pig population[D]. Thesis for M.S., Northeast Agricultural University, Supervisor: Liu D, pp. 49-54.) [3] 冯小品, 李隐侠, 张晨俭, 等. 2022. 波尔山羊PLAG1基因克隆、多态性鉴定及其与出生体重、体尺性状的关联分析[J]. 中国畜牧兽医, 49(04): 3465-3474. (Feng X P, Li Y X, Zhang C J, et al.2022. Coning and polymorphism identification of PLAG1 gene and its association analysis with birth weight and body size traits in Boer goats[J]. China Animal Husbandry & Veterinary Medicine, 49(04): 3465-3474.) [4] 高自超, 周元军. 2007. 新沂蒙黑猪的选育与发展前景[J]. 中国畜禽种业, 06: 47-48. (Gao Z C,Zhou Y J. 2007. Breeding and development prospect of new Yimeng black pig[J]. The Chinese Livestock and Poultry Breeding, (06): 47-48.) [5] 滚双宝. 2017. 猪生产学实验实习指导[M]. 中国农业出版社.. pp. 66-68. (Gun S B.2017. Practical Guidance for Pig Production Experiments[M]. China Agriculture Press.. pp. 66-68.) [6] 郭潇潇, 李隐侠, 王悦, 等. 2021. 湖羊PLAG1基因5'. 调控区多态性及其与早期体重的关联分析[J]. 畜牧兽医学报, 52(02): 331-343. (Guo X X, Li Y X, Wang Y, et al.2021. Polymorphisms in the 5' regulatory region of PLAG1 gene and their association with early body weight of Hu sheep[J]. Acta Veterinaria et Zootechnica Sinica, 52(02): 331-343.) [7] 候利娟. 2017. 在四个实验猪群中利用全基因组关联分析及其荟萃分析定位影响四肢骨骼长度的基因位点[D]. 硕士学位论文, 江西农业大学, 导师: 郭源梅, pp. 34-35. (Hou L J.2017. A genome-wide association study and meta analysis for limb bone lengths in four pig populations[D]. Thesis for M.S., Jiangxi Agricultural University, Supervisor: Guo Y M, pp. 34-35.) [8] 季久秀, 张春峰, 潘章源, 等. 2022. 杜寒杂交羊四个候选基因多态性与体尺性状的关联分析[J]. 黑龙江畜牧兽医, 01: 42-48, 53. (Ji J X, Zhang C F, Pan Z Y, et al.2022. Association analysis between four candidate gene polymorphisms and body size traits in DuHan hybrid sheep[J]. Heilongjiang Animal Science and Veterinary, 01: 42-48, 53.) [9] 贾祥捷, 王长法, 杨桂文, 等. 2011. 中国荷斯坦牛POU1F1基因与PRL基因的多态性及其聚合效应对产奶性状的影响[J]. 遗传, 33(12): 1359-1365. (Jia X J, Wang C F, Yang G W, et al.2011. Polymorphism of POU1F1 gene and PRL gene and their combined effects on milk performance traits in Chinese Holstein cattle[J]. Hereditas (Beijing), 33(12): 1359-1365.) [10] 刘钦, 齐芬芳, 黄世会, 等. 2023. 香猪ADCY2基因结构变异鉴定及其与生长性状的关联分析[J]. 中国畜牧杂志. 59(09): 197-201. (Liu Q, Qi F F, Huang S H, et al.2023. Identification of structural variation of ADCY2 gene and its association with growth traits in pig[J]. Chinese Journal of Animal Science, 1-9.) [11] 刘小红, 陈瑶生. 2023. 2022年生猪产业发展状况、未来发展趋势与建议[J]. 中国畜牧杂志, 59(03): 264-268. (Liu X H, Chen Y S.2022. Development status, future development trend and suggestions of pig industry in 2022[J]. Chinese Journal of Animal Science, 59(03): 264-268.) [12] 卢立志, 李进军, 田勇, 等. 2010. 家禽单核苷酸多态性研究与应用新进展[J]. 农业生物技术学报, 18(02): 374-381. (Lu L Z, Li J J, Tian Y, et al.2010. Recent progresses on research and application of poultry single nucleotide polymorphism[J]. Journal of Agricultural Biotechnology, 18(02): 374-381.) [13] 孟庆利. 2022. 美系大白种猪生长性状和繁殖性状遗传力估计[J]. 养猪, 04: 59-60. (Meng Q L.2022. Estimation of heritability of growth and reproductive traits in American white breeding pigs[J]. Swine Production, 04: 59-60.) [14] 闵奇, 刘益丽, 蒋梦娟, 等. 2023. 调控牛体型大小的信号通路及候选基因研究进展[J]. 黑龙江畜牧兽医, 1-9. (Min Q, Liu Y L, Jiang M J, et al.2023. Research progress on signaling pathways and candidate genes regulating bovine body size[J]. Heilongjiang Animal Science and Veterinary, 1-9.) [15] 王佳琦. 2023. 江泉黑猪生长性状相关候选基因及分子标记的筛选[D]. 硕士学位论文, 山东农业大学, 导师: 唐辉, pp. 11. (Wang J Q.2023. Screening of candidate genes and molecular markers related to growth traits in Jiangquan black pigs[D]. Thesis for M.S., Shandong Agricultural University, Supervisor: Tang H, pp. 11.) [16] 赵拴平, 金海, 徐磊, 等. 2020. 牛PLAG1基因多态性与大别山牛生长性状的相关性分析[J]. 中国草食动物科学, 40(04): 7-11. (Zhao S Q, Jin H, Xu L, et al.2020. Polymorphism of bovine PLAG1 gene and its association with growth traits in Dabieshan cattle[J]. China Herbivore Science, 40(04): 7-11.) [17] Abi H W, Brioude F, Edouard T, et al.2018. Genetic disruption of the oncogenic HMGA2-PLAG1-IGF2 pathway causes fetal growth restriction[J]. Genetics in Medicine, 20(2): 250-258. [18] Akey J, Jin L, Xiong M.2001. Haplotypes vs single marker linkage disequilibrium tests: What do we gain?[J]. European Journal of Human Genetics, 9(4): 291-300. [19] Astrom A, D'amore E S, Sainati L, et al.2000. Evidence of involvement of the PLAG1 gene in lipoblastomas[J]. International Journal of Oncology, 16(6): 1107-1117. [20] Cahyadi M, Sukaryo S, Dhiaurridho M I, et al.2022. Association of pleomorphic adenoma gene 1 with body weight and measurement of Bali cattle (Bos javanicus)[J]. Veterinary World, 15(3): 782-788. [21] Cho Y S, Go M J, Kim Y J, et al.2009. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits[J]. Nature Genetics, 41(5): 527-534. [22] Chowdhury M A R, An J, Jeong S.2023. The pleiotropic face of CREB family transcription factors[J]. Molecules and Cells, 46(7): 399-413. [23] Cui A, Ding D, Li Y.2021. Regulation of hepatic metabolism and cell growth by the ATF/CREB family of transcription factors[J]. Diabetes, 70(3): 653-664. [24] Declercq J, Dyck F V, Braem C V, et al.2005. Salivary gland tumors in transgenic mice with targeted PLAG1 proto-oncogene overexpression[J]. Cancer Research, 65(11): 4544-4553. [25] Goddard M E, Hayes B J.2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes[J]. Nature Reviews Genetics, 10(6): 381-391. [26] Guo Y, Hou L, Zhang X, et al.2015. A meta analysis of genome-wide association studies for limb bone lengths in four pig populations[J]. BioMed Central Genetics, 16: 95. [27] Hensen K, Braem C, Declercq J, et al.2004. Targeted disruption of the murine PLAG1 proto-oncogene causes growth retardation and reduced fertility[J]. Development, Growth & Differentiation, 46(5): 459-470. [28] Hou J, Qu K, Jia P, et al.2020. A SNP in PLAG1 is associated with body height trait in Chinese cattle[J]. Animal Genetics, 51(1): 87-90. [29] Hou L, Zhao H.2013. A review of post-GWAS prioritization approaches[J]. Frontiers in Genetics, 4: 09. [30] Huang W, Li B R, Feng H.2020. PLAG1 silencing promotes cell chemosensitivity in ovarian cancer via the IGF2 signaling pathway[J]. International Journal of Molecular Medicine, 45(3): 703-714. [31] Inoue S, Ide H, Mizushima T, et al.2018. ELK1 promotes urothelial tumorigenesis in the presence of an activated androgen receptor[J]. American Journal of Cancer Research, 8(11): 2325-2336. [32] Karim L, Takeda H, Lin L, et al.2011. Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature[J]. Nature Genetics, 43(5): 405-413. [33] Kas K, Voz M L, Hensen K, et al.1998. Transcriptional activation capacity of the novel PLAG family of zinc finger proteins[J]. The Journal of Biological Chemistry, 273(36): 23026-23032. [34] Keyvani C A, Belew M S, Xu J, et al.2022. PLAG1 dampens protein synthesis to promote human hematopoietic stem cell self-renewal[J]. Blood, 140(9): 992-1008. [35] Koizumi M, Morita K, Takagi M, et al.2005. SNP genotyping by allele-specific PCR using ENA primers[J]. Nucleic Acids Symposium Series, 49(1): 47-48. [36] Lango A H, Estrada K, Lettre G, et al.2010. Hundreds of variants clustered in genomic loci and biological pathways affect human height[J]. Nature, 467(7317): 832-838. [37] Li S J, Liu H, Bai J J, et al.2017. Transcriptome assembly and identification of genes and SNPs associated with growth traits in largemouth bass (Micropterus salmoides)[J]. Genetica, 145(2): 175-187. [38] Littlejohn M, Grala T, Sanders K, et al.2012. Genetic variation in PLAG1 associates with early life body weight and peripubertal weight and growth in Bos taurus[J]. Animal Genetics, 43(5): 591-594. [39] Madissoon E, Damdimopoulos A, Katayama S, et al.2019. Pleomorphic adenoma gene 1 is needed for timely zygotic genome activation and early embryo development[J]. Scientific Reports, 9(1): 8411. [40] Meiger O C, Koorneef L L, Kroon J.2018. Glucocorticoid receptor modulators[J]. Annales d'Endocrinologie, 79(3): 107-111. [41] Nei M.1978. Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics, 89(3): 583-590. [42] Orozco G, Hinks A, Eyre S, et al.2009. Combined effects of three independent SNPs greatly increase the risk estimate for RA at 6q23[J]. Human Molecular Genetics, 18(14): 2693-2699. [43] Pan Y, Wang M, Wu H, et al.2022. Indel mutations of sheep PLAG1 gene and their associations with growth traits[J]. Animal Biotechnology, 33(7): 1459-1465. [44] Papavassiliou A G, Musti A M.2020. The multifaceted output of c-Jun biological activity: focus at the junction of CD8 T cell activation and exhaustion[J]. Cells, 9(11): 2470. [45] Qiao R, Gao J, Zhang Z, et al.2015. Genome-wide association analyses reveal significant loci and strong candidate genes for growth and fatness traits in two pig populations[J]. Genetics Selection Evolution, 47(1): 17. [46] Racca A C, Prucca C G, Caputto B L.2019. Fra-1 and c-Fos N-terminal deletion mutants impair breast tumor cell proliferation by blocking lipid synthesis activation[J]. Frontiers in Oncology, 9: 544. [47] Saatchi M, Schnabel R D, Taylor J F, et al.2014. Large-effect pleiotropic or closely linked QTL segregate within and across ten US cattle breeds[J]. BioMed Central genomics Genomics, 15(1): 442. [48] Voz M L, Mathys J, Hensen K, et al.2004. Microarray screening for target genes of the proto-oncogene PLAG1[J]. Oncogene, 23(1): 179-191. [49] Wang Y, Li Y X, Zhang J, et al.2023. PLAG1 g.8795C>T mutation regulates early body weight in Hu sheep by weakening miR-139 binding[J]. Genes, 14(2): 467. [50] Xu P, Ni L, Tao Y, et al.2020. Genome-wide association study for growth and fatness traits in Chinese Sujiang pigs[J]. Animal Genetics, 51(2): 314-318. [51] Zatkova A, Rouillard J M, Hartmann W, et al.2004. Amplification and overexpression of the IGF2 regulator PLAG1 in hepatoblastoma[J]. Genes Chromosomes and Cancer, 39(2): 126-137. [52] Zhang Y, Wang M, Yuan J, et al.2018. Association of polymorphisms in NR6A1, PLAG1 and VRTN with the number of vertebrae in Chinese Tongcheng × Large White crossbred pigs[J]. Animal Genetics, 49(4): 353-354. [53] Zhao X, Ren W, Yang W, et al.2006. Wnt pathway is involved in pleomorphic adenomas induced by overexpression of PLAG1 in transgenic mice[J]. International Journal of Cancer, 118(3): 643-648. [54] Zhong J L, Xu J W, Wang J, et al.2019. A novel SNP of PLAG1 gene and its association with growth traits in Chinese cattle[J]. Gene, 689: 166-171. |
|
|
|