|
|
Genetic Diversity and Structure Analysis of Seven F1 Hybrid Population of Procambarus clarkii |
SHEN Heng-Rui1, ZHANG Ai-Fang2, WANG Qi-Shuai1, ZHOU Zhi-Yong2, LIU Yun-Long1, XU Xian-Dong2, WANG Jing-Yu2, ZHONG Ke-Er2, LI Yan-He1, HUANG Jiang-Feng2,* |
1 College of Fisheries /Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Huazhong Agricultural University, Wuhan 430070, China; 2 Fisheries Research Institute of Jiangxi Province, Nanchang 330039, China |
|
|
Abstract The red swamp crayfish (Procambarus clarkii) predominate the freshwater crayfish farming field in China. To investigate the genetic diversity of the first filial generation offspring (F1) obtained from hybridization between close-distance breeding populations, the genetic diversity of 7 F1 populations derived from incomplete diallel crosses involving 4 close-distance breeding populations of P. clarkii from Jinxian (JX), Yongxiu (YX), Poyang (PY), and Henghu (HH), were analyzed using 12 pairs of microsatellite markers. The results showed that the average number of alleles (Na) for the 7 F1 populations ranged from 4.167 to 5.500, and the average effective number of alleles (Ne) ranged from 2.831 to 3.237. The average values of the Shannon's information index (I), observed heterozygosity (Ho), expected heterozygosity (He), and polymorphic information content (PIC) ranged from 1.131 to 1.264, 0.507 to 0.607, 0.614 to 0.651, and 0.553 to 0.594, respectively, indicating a high level of genetic diversity. Genetic differentiation analysis showed that the genetic differentiation coefficient (Fst) among the F1 populations ranged from 0.004 to 0.009, the number of migrants per generation (Nm) ranged from 29.037 to 70.305, the Nei's genetic distance among the F1 populations ranged from 0.011 to 0.030, and the genetic similarity coefficient ranged from 0.971 to 0.989, indicating a low level of differentiation. The UPGMA (unweighted pair-group method with arithmetic means) clustering diagram constructed based on Nei's standard genetic distance showed that the 7 F1 populations were divided into 2 groups, with 5 F1 populations clustered into 1 cluster, and the JX♀×YX♂ group clustered with the JX♀×PY♂ group firstly, and then with the YX♀×HH♂ group, the PY♀×HH♂ group, and YX♀×JX♂ in turn, with the PY♀×JX♂ population and the HH♀×YX♂ population forming another cluster. Genetic structure analysis indicated that the optimal number of genetic clusters was K=5, and the 7 hybrid F1 populations exhibited similar and complex genetic backgrounds, with homogenization observed among them. This study provides valuable insights for diallel hybrid breeding and the utilization of hybrid offspring advantages in close-distance breeding populations of P. clarkii. and lays the foundation for the future development and utilization of high-quality germplasm resources of P. clarkii from the Poyang Lake water system.
|
Received: 05 December 2024
|
|
Corresponding Authors:
*hjf1992006@163.com
|
|
|
|
[1] 曹烈, 杜时强, 徐金根, 等. 2023. 4个不同水系克氏原螯虾繁殖与养殖性能对比[J]. 江西水产科技, (04): 6-11. (Cao L, Du S Q, Xu J G, et al. 2023. Comparison of breeding and farming performance of four different water system species of Procambarus clarkii[J]. Jiangxi Fishery Science and Technology, (04): 6-11.) [2] 陈文淳, 彭凯, 黄敏伟, 等. 2024. 基于SSR标记分析15个凡纳滨对虾家系遗传多样性和遗传结构[J]. 生物工程学报, 40(12): 4628-4644. (Chen W C, Peng C, Huang M W, et al.2024. Genetic diversity and structure of 15 full-sib families of Litopenaeus vannamei based on SSR markers[J]. Chinese Journal of Biotechnology, 40(12): 4628-4644.) [3] 崔文涛, 邹宇凡, 白志毅, 等. 2023. 安徽地区克氏原螯虾群体的遗传多样性和遗传结构[J]. 水产学报, 47(09):92-101. (Cui W T, Zou Y F, Bai Z Y, et al.2023. Genetic diversity and structure analysis of Procambarus clarkii populations in Anhui Province[J]. Journal of Fisheries of China, 47(09): 92-101.) [4] 崔学海, 沙航, 曹继增, 等. 2024. 克氏原螯虾湖北7个养殖群体遗传多样性的SSR分析[J]. 淡水渔业, 54(06): 79-86. (Cui X H, Sha H, Cao J Z, et al.2024. Genetic diversity analysis of the seven aquaculture populations of Procambarus clarkia in Hubei province based on SSR markers[J]. Freshwater Fisheries, 54(06): 79-86.) [5] 高杨, 田灿, 姜京京, 等. 2023. 基于微卫星标记的克氏原螯虾种群遗传多样性和遗传结构分析[J]. 江苏农业科学, 51(05): 191-199. (Gao Y, Tian C, Jiang J J, et al.2023. Genetic diversity and genetic structure analysis of Procambarus clarkii population based on microsatellite markers[J]. Jiangsu Agricultural Sciences, 51(05): 191-199.) [6] 胡倩, 王齐帅, 黄瑾, 等. 2024. 基于形态性状和SSR标记的克氏原螯虾养殖群体遗传多样性分析[J]. 华中农业大学学报, 43(03): 258-266. (Hu Q, Wang Q S, Huang J, et al.2024. Genetic diversity analysis of farming Procambarus clarkii population based on morphology traits and SSR markers[J]. Journal of Huazhong Agricultural University, 43(03): 258-266.) [7] 黄小芳, 唐章生, 刘俊丹, 等. 2020. 广西不同地区克氏原螯虾群体遗传多样性微卫星分析[J]. 南方农业学报, 51(02): 437-444. (Huang X F, Tang Z S, Liu J D, et al.2020. Genetic diversity microsatellite analysis of Procambarus clarkii populations in different regions of Guangxi[J]. Journal of Southern Agriculture, 51(02): 437-444.) [8] 刘小宇, 熊礼静, 彭波, 等. 2023. 14个克氏原螯虾养殖群体遗传多样性分析[J]. 水产科学, 42(03): 457-465. (Liu X Y, Xiong L J, Peng B, et al.2023. Genetic diversity analysis of 14 cultured populations of red swamp crayfish Procambarus clarkii in China[J]. Fisheries Science, 42(03): 457-465.) [9] 吕永春, 潘志辉, 王美娟, 等. 2024. 克氏原螯虾早苗繁育高产试验[J]. 水产养殖, 45(05): 42-44. (Lv Y C, Pan Z H, Wang M J, et al.2024. Early seedling breeding and high yield trial of crayfish (Procambarus clarkii)[J]. Journal of Aquaculture, 45(05): 42-44.) [10] 缪一恒, 沈玉帮, 徐晓雁, 等. 2019. 长江、珠江和黑龙江草鱼双列杂交组合遗传变异的微卫星分析[J]. 上海海洋大学学报, 28(06): 865-872. (Miu Y H, Shen Y B, Xu X Y, et al.2019. Microsatellite analysis of genetic variation of diallel hybrid populations of grass carp (Ctenopharyngodon idellus) in three waters[J]. Journal of Shanghai Ocean University, 28(06): 865-872.) [11] 任妮, 戴红君, 张琤琤, 等. 2021. 我国克氏原螯虾产业调查分析与发展对策建议[J]. 江苏农业科学, 49(19): 241-246. (Ren N, Dai H J, Zhang Z Z, et al.2021. Investigation and analysis of China's crayfish industry and suggestions for development strategies[J]. Jiangsu Agricultural Sciences, 49(19): 241-246.) [12] 谭云飞, 蓬国辉, 熊礼静, 等. 2020. 长江中下游流域13个克氏原螯虾群体遗传多样性和遗传结构分析[J]. 华中农业大学学报, 39(02): 33-39. (Tan Y F, Peng G H, Xiong L J, et al.2020. Genetic diversity and structure analysis of 13 red swamp crayfish (Procambarus clarkii) populations in Yangtze River basin[J]. Journal of Huazhong Agricultural University, 39(02): 33-39.) [13] 唐建清. 2009. 克氏原螯虾养殖技术(一)[J]. 水产养殖, 30(01): 39-41. (Tang J Q.2009. Cultivation techniques for Procambarus clarkii (1)[J]. Journal of Aquaculture, 30(01): 39-41.) [14] 王石, 汤陈宸, 陶敏, 等. 2018. 鱼类远缘杂交育种技术的建立及应用[J].中国科学:生命科学, 48(12): 1310-1329. (Wang S, Tang C C, Tao M, et al.2018. Establishment and application of distant hybridization breeding technology in fish[J]. Scientia Sinica (Vitae), 48(12): 1310-1329.) [15] 吴玮杰, 徐啟洲, 万通, 等. 2024. 克氏原螯虾3群体双列杂交群体耐高温性能比较[J]. 大连海洋大学学报, 39(04): 606-612. (Wu W J, Xu Q Z, Wan T, et al.2024. Comparison of high temperature tolerance in three population diallel hybrid population of red swamp crayfish (Procambarus clarkii)[J]. Journal of Dalian Ocean University, 39(04): 606-612.) [16] 熊礼静. 2023. 克氏原螯虾抗病品系选育与杂交优势分析[D]. 硕士学位论文, 华中农业大学, 导师: 白旭峰, pp. 23-35. (Xiong L J.2023. The breed of crayfish (Procambarus clarkii) for disease resistance and analysis of heterosis[D]. Thesis for M. S., Huazhong Agricultural University, Supervisor: Bai X F, pp. 23-35) [17] 余红喜, 刘帆, 朱国美, 等. 2022. 基于线粒体CO Ⅰ基因滁州地区克氏原螯虾养殖群体遗传多样性分析[J]. 安徽农业科学, 50(21): 111-113. (Yu H X, Liu F, Zhu G M, et al.2022. Analysis of genetic diversity of P.clarkii culture population in Chuzhou based on mitochondrial CO I Gene[J]. Journal of Anhui Agricultural Sciences, 50(21): 111-113.) [18] 庄振俊, 唐美君, 张冬冬,等. 2023. 中华绒螯蟹“长荡湖1号”连续3个世代的遗传多样性分析[J]. 水生生物学报, 47(09): 1523-1533. (Zhuang Z J, Tang M J, Zhang D D, et al.2023. Genetic diversity of three consecutive generations of Eriocheir sinensis “Changdang Lake 1”[J]. Acta Hydrobiologica Sinica, 47(09): 1523-1533.) [19] 邹宇凡, 吴玮杰, 白志毅, 等. 2024. 克氏原螯虾三群体双列杂交组合生长性能和耐干露能力比较分析[J]. 上海海洋大学学报, 33(02): 361-370. (Zou Y F, Wu W J, Bai Z Y, et al.2024. Comparative analysis of growth performance and desiccation resistance of three-population diallel hybrid combination of Procambarus clarkii[J]. Journal of Shanghai Ocean University, 33(02): 361-370.) [20] Evanno G, Regnaut S, Goudet J.2005. Detecting the number of clusters of individuals using the software structure: A simulation study[J]. Molecular Ecology, 14: 2611-2620. [21] Kalinowski S T, Taper M L, Marshall T C.2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment[J]. Molecular Ecology, 16(5): 1099-1106. [22] Kopelman N M, Mayzel J, Jakobsson Met al.2015. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K[J]. Molecular Ecology Resources, 15(5): 1179-1191. [23] Li Y L, Liu J X.2018. StructureSelector: A web based software to select and visualize the optimal number of clusters using multiple methods[J]. Molecular Ecology Resources, 18: 176-177. [24] Liu F, Qu Y K, Geng C, et al.2020. Analysis of the population structure and genetic diversity of the red swamp crayfish (Procambarus clarkii) in China using SSR markers[J]. Electronic Journal of Biotechnology, 47: 59-71. [25] Liu J Q, Sun Y F, Chen Q Q, et al.2023. Genetic diversity analysis of the red swamp crayfish Procambarus clarkii in three cultured populations based on microsatellite markers[J]. Animals, 13(11): 1881. [26] Nussey D H, Wilson A J, Brommer J E.2007. The evolutionary ecology of individual phenotypic plasticity in wild populations[J]. Journal of Evolutionary Biology, 20(3): 831-844. [27] Peakall R, Smouse E P.2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research an update[J]. Bioinformatics, 28(19): 2537-2539. [28] Pritchard J K, Stephens M, Donnelly P.2000. Inference of population structure using multilocus genotype data[J]. Genetics, 155(2): 945-959. [29] Tamura K, Stecher G, Kumar S.2021. MEGA11: Molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 38(7): 3022-3027. [30] Wang Q S, Hu Q, Yang S Q, et al.2023. Isolation of tetrameric microsatellite markers and its application on parentage identification in Procambarus clarkii[J]. Aquaculture International, 31: 2099-2111. |
|
|
|