|
|
Identification, Expression and Interaction Analysis of the GRF Gene Family in Betula pendula |
WANG Wen-Xin, JIANG Mei, GE Xu-Ru, WANG Xiao-Ya, HUANG Hua-Hong, LIN Er-Pei* |
The School of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China |
|
|
Abstract Growth-regulating factors (GRFs) are plant-specific transcription factors that play an important role in regulating plant growth and development. Based on the genome sequence of Betula pendula, in this study, analyses on GRF gene family were conducted, including their identification, gene sequence characteristics, evolutionary relationships, cis-acting elements within promoters, expression patterns and protein interaction. The results revealed that there were 10 GRF genes in the genome of B. pendula, distributed across 6 chromosomes and belonged to 6 subgroups (Ⅰ~Ⅵ). The members within the same subgroup had similar gene structures and conserved motifs, and they were all regulated by miR396. Cis-acting element analysis showed that numerous regulatory elements related to growth, hormone response, and abiotic stress were located in the promoter regions of BpeGRF genes. Expression analysis indicated that most BpeGRFs genes had significantly higher expression levels in young tissues such as apical buds compared to mature tissues. Genes like BpeGRF1, BpeGRF3 and BpeGRF4 exhibited specific high expression in apical buds. Meanwhile, the expression of most BpeGRF genes showed an initial increase followed by a decrease under gibberellin (GA) treatment. Protein interaction prediction analysis showed that widespread interactions among 8 BpeGRFs with GRF-interacting factor (GIF) BpeGIF1 and BpeGIF3, and further bimolecular fluorescence complementation (BiFC) experiments confirmed a strong interaction between BpeGRF4 and BpeGIF1. This study lays an important foundation for further exploration of the functions of GRF genes in B. pendula.
|
Received: 16 December 2024
|
|
Corresponding Authors:
*zjulep@hotmail.com
|
|
|
|
[1] 李舟阳. 2021. 杉木BBM、WOX5和WOX6基因克隆与功能研究[D]. 硕士学位论文, 浙江农林大学, 导师: 林二培, pp. 26. (Li Z Y.2021. Cloning and functional analysis of BBM, WOX5 and WOX6 in Cunninghamia lanceolata[D]. Thesis for M. S., Zhejiang A&F University, Supervisor: Lin E P, pp. 26.) [2] 刘芳. 2008. 桦树新秀—疣枝桦[J]. 新疆农垦科技, 31(3): 2. (Liu F.2008. Betula pubescens - A New star in the birch family[J]. Journal of Xinjiang Agricultural Reclamation Technology, 31(3): 2.) [3] 马超, 原佳乐, 张苏, 等. 2017. GRF转录因子对植物生长发育及胁迫响应调控的分子机制[J]. 核农学报, 31(11): 9. (Ma C, Yuan J L, Zhang S, et al.2017. The molecular mechanism of GRF transcription factors in regulating plant growth, development, and stress responses[J]. Journal of Nuclear Agricultural Sciences, 31(11): 9.) [4] 山琦, 贾惠舒, 姚文博, 等. 2022. 植物miR396-GRF模块的生物学功能及其潜在应用价值[J]. 生物技术通报, 38(10): 34-44. (Shan Q, Jia H S, Yao W B, et al.2022. Research progress in biological functions of miR396-GRF module in plants and its potential application values[J]. Biotechnology Bulletin, 38(10): 34-44.) [5] 王鹏杰, 郑玉成, 林浥, 等. 2019. 茶树GRF基因家族的全基因组鉴定及表达分析[J].西北植物学报, 39(03): 413-421. (Wang P J, Zheng Y C, Lin Y, et al.2019. Genome-wide identification and expression analysis of GRF gene family in Camellia sinensis[J]. Acta Botanica Boreali-Occidentalia Sinica, 39(03): 413-421.) [6] 武模征, 王胜杰, 代阳, 等. 2024. 森林植物木豆CcGRFs全基因组鉴定及耐盐功能[J]. 东北林业大学学报, 52(08): 14-22. (Wu M Z, Wang S J, Dai Y, et al.2024. Identification and salt tolerance function of the full genome of Cajinus cajan CcGRFs in forest plants[J]. Journal of Northeast Forestry University, 52(08): 14-22.) [7] Ai G, Zhang D D, Huang R, et al.2020. Genome-wide identification and molecular characterization of the growth-regulating factors-interacting factor gene family in tomato[J]. Genes, 11(12): 1435. [8] Bailey T L, Johnson J, Grant C E, et al.2015. The meme suite[J]. Nucleic Acids Research, 43(W1): 39-49. [9] Bao M L, Bian H W, Zha Y L, et al.2014. Mir396a-mediated basic helix-loop-helix transcription factor bHLH74 repression acts as a regulator for root growth in Arabidopsis seedlings[J]. Plant & Cell Physiology, 55(7):1343-1353. [10] Chen C, Chen H, Zhang Y, et al.2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 13(8): 1194-1202. [11] Choi D S, Kim J H, Kende H.2004. Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.)[J]. Plant & Cell Physiology, 45(7): 897-904. [12] Duan P G, Ni S, Wang J M, et al.2015. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice[J]. Nature Plants, 2(1): 15203. [13] Chen F, Yang Y Z, Lou X F, et al.2019. Genome-wide identification of GRF transcription factors in soybean and expression analysis of GmGRF family under shade stress[J]. BMC Plant Biology, 19(1): 1-13. [14] Dai X, Zhuang Z, Zhao P X.2018. psRNATarget: A plant small RNA target analysis server (2017 release)[J]. Nucleic Acids Research, 46(1): 305-1048 [15] Debernardi J M, Mecchia M A, Vercruyssen L, et al.2014. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity[J]. Plant Journal, 79(3): 413-426. [16] Finn R D, Mistry J, Tate J, et al.2010. The pfam protein families database[J]. Nucleic Acids Research, 38: 211-222. [17] Gasteiger E, Christine H, Alexandre G, et al.2005. Protein Identification and Analysis Tools on the ExPASy Server[M]. The Proteomics Protocols Handbook, Humana Press, pp. 571-607. [18] Horiguchi G, Kim G T, Tsukaya H.2005. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana[J]. Plant Journal, 43(1): 68-78. [19] Hu C D, Yurii C, Tom K K, et al.2002. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation[J]. Molecular Cell, 9(4): 789-798. [20] Jing Y N, Wang H Z, Li C H, et al.2022. Genome-wide identification and expression analysis of the bZIP gene family in silver birch (Betula pendula Roth.)[J]. Journal of Forestry Research, 33(5): 1615-1636 [21] Khatun K, Robin K H A, Park J, et al.2017. Molecular characterization and expression profiling of tomato GRF transcription factor family genes in response to abiotic stresses and hytohormones[J]. International Journal of Molecular Sciences, 18(5): 1056. [22] Kim J H, Choi D, Kende H.2010. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis[J]. Plant Journal, 36(1): 94-104. [23] Kim J H, Kende H.2004. A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the USA, 101(36): 13374-13379. [24] Kim J H, Lee B H.2006. Growth-regulation factor 4 of Arabidopsis thaliana is required for development of leaves, cotyledons, and shoot apical meristem[J]. Journal of Plant Biology, 49(6): 463-468. [25] Kim J S, Mizoi J, Kidokoro S, et al.2012. Arabidopsis growth-regulating factor 7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, including DREB2A[J]. Plant Cell, 24(8): 3393-3405. [26] Koski V, Rousi M.2005. A review of the promises and constraints of breeding silver birch (Betula pendula Roth) in Finland[J]. Forestry, 78(2): 187-197. [27] Knaap E V D, Kim J H, Kende H.2000. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth[J]. Plant Physiology, 122(3): 695-704. [28] Letunic I, Bork P.2006. Interactive tree of life (iTOL): An online tool for phylogenetic tree display and annotation[J]. Bioinformatics, 23(1): 127-128. [29] Letunic I, Doerks T, Bork P.2011. SMART 7: Recent updates to the protein domain annotation resource[J]. Nucleic Acids Research, 40: 302-305. [30] Li S C, Gao F Y, Xie K L, et al.2016. The OsmiR396c‐OsGRF4‐OsGIF1 regulatory module determines grain size and yield in rice[J]. Plant Biotechnology Journal, 14(11): 2134-2146. [31] Liebsch D, Palatnik F J.2020. MicroRNA miR396, GRF transcription factors and GIF co-regulators: A conserved plant growth regulatory module with potential for breeding and biotechnology[J]. Current Opinion in Plant Biology, 53: 31-42. [32] Liu H H, Guo S Y, Xu Y Y, et al.2014. OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4[J]. Plant Physiology, 165(1): 160-174. [33] Lu Y Z, Zeng J, Liu Q Q.2022. The rice miR396-GRF-GIF-SWI/SNF module: A player in GA signaling[J]. Frontiers in Plant Science, 12: 786641-786641. [34] Jones-Rhoades W M, Bartel P D.2004. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J]. Molecular Cell, 14(6): 787-799. [35] Meng L Y, Li X M, Hou Y, et al.2022. Functional conservation and divergence in plant-specific GRF gene family revealed by sequences and expression analysis[J]. Open Life Sciences, 17(1): 155-171. [36] Newman L, Duffus J L A, Lee C.2016. Using the free program MEGA to build phylogenetic trees from molecular data[J]. The American Biology Teacher, 78(7): 608-612. [37] Omidbakhshfard A M, Proost S, Fujikura U, et al.2015. Growth-regulating factors (GRFs): A small transcription factor family with important functions in plant biology[J]. Molecular Plant, 8(7): 998-1010. [38] Pajoro A, Madrigal P, Muiño J M, et al.2014. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development[J]. Genome Biology, 15(3): 41. [39] Rauschhuber C, Mueck-Haeusl M, Zhang W L, et al.2013. RNAi suppressor P19 can be broadly exploited for enhanced adenovirus replication and microRNA knockdown experiments[J]. Scientific Reports, 3(1): 1363. [40] Rombauts S, Dehais P, Van Montagu M, et al.1999. PlantCARE, a plant cis-acting regulatory element database[J]. Nucleic Acids Research, 30(1): 325-327. [41] Salojärvi J, Smolander O P, Nieminen K, et al.2017. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch[J]. Nature Genetics, 49(6): 904-912. [42] Su L, Shan J X, Gao J P, et al.2016. OsHAL3, a blue light-responsive protein, interacts with the floral regulator Hd1 to activate flowering in rice[J]. Molecular Plant, 9(2): 233-244. [43] Szklarczy D, Nastou K, Koutrouli M, et al.2024. The STRING database in 2025: Protein networks with directionality of regulation[J]. Nucleic Acids Research, 53(D1): D730-D737. [44] Treich I, Cairns B R, Santos T, et al.1995. SNF11, a new component of the yeast SNF-SWI complex that interacts with a conserved region of SNF2[J]. Molecular and Cellular Biology, 15(8): 4240-4248. [45] Wang F D, Qiu N W, Ding Q, et al.2014. Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. BMC Genomics, 15(1): 807. [46] Wang P, Xiao Y, Yan M, et al.2023. Whole-genome identification and expression profiling of growth-regulating factor (GRF) and GRF-interacting factor (GIF) gene families in Panax ginseng[J]. BMC Genomics, 24(1): 334-334. [47] Zan T, Zhang L, Xie T T, et al.2020. Genome-wide identification and analysis of the growth-regulating factor (GRF) gene family and GRF-interacting factor Family in Triticum aestivum L[J]. Biochemical Genetics, 58(5): 705-724. [48] Zhao X Y, Yang J J, Li G J, et al.2021. Genome-wide identification and comparative analysis of the WRKY gene family in aquatic plants and their response to abiotic stresses in giant duckweed (Spirodela polyrhiza)[J]. Genomics, 113(4): 1761-1777. [49] Zhang D F, Li B, Jia G Q, et al.2008. Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in maize (Zea mays L.)[J]. Plant Science, 175(6): 809-817. [50] Zhang J F, Li Z F, Jin J J, et al.2018. Genome-wide identification and analysis of the growth-regulating factor family in tobacco (Nicotiana tabacum)[J]. Gene, 639: 117-127. |
|
|
|