|
|
Identification and Expression Analysis of DNAJ Gene Family in Melon(Cucumis melo) Based on Transcriptome Sequencing |
WANG Tao, I Ze-Lin, DU Qing-Jie, LI Juan-Qi, WANG Hu, WANG Ji-Qing, XIAO Huai-Juan*, LI Meng* |
College Horticulture, Henan Agricultural University/Henan Provincial Facility Vegetable Engineering Technology Research Center/InternationalJoint Laboratory of Henan Horticultural Crop Biology, Zhengzhou 450046 |
|
|
Abstract DNAJ protein usually plays an important role in plant growth and development and resistance to biological and non-biological stress as an auxiliary companion molecule of heat shock protein70 (HSP70). A total of 10 melon (Cucumis melo) DNAJ candidate members were identified in the transcriptome sequencing data of melon seedlings after low-temperature treatment by bioinformatics methods in this study.Furthermore, chromosome position, gene structure, subcellular localization, protein secondary/tertiary structure were determined. Meanwhile, the protein interaction, systematic evolution, cis-acting element and transcription level under abiotic stresses were analyzed. Results showed that 4 CmDNAJ members were distributed on 3 chromosomes, and were named CmDNAJ1~CmDNAJ4. The length of amino acids ranged from161 to 503 aa, all of which were hydrophilic, and located in the nucleus (CmDNAJ2/3), cytoplasmic (CmDNAJ12/3/4) and endoplasmic reticulum (CmDNAJ2). Systematic evolutionary analysis found that members of the melon DNAJ gene family were closely related to cucumber (C. sativus). The predictiveanalysis found that the 4 DNAJ promoters mainly contained cis-acting elements such as hormone response, light response and abiotic stress response. There were significant differences in tissue-specific expression of the 4 genes, only CmDNAJ1 and CmDNAJ2 showing highly expressed in male flowers, female flowers, roots,fruits and leaves of melons. CmDNAJ1, CmDNAJ2 and CmDNAJ3 might play a positive regulatory role in the process of fruit development and maturity, while CmDNAJ4 might play a negative regulatory role. The results of qRT-PCR confirmed that CmDNAJ1~CmDNAJ4 all responded to low temperature, high salt, abscisic acid (ABA), and drought induction. CmDNAJ1 and CmDNAJ2 were the key gene for responding to cold stress; CmDNAJ2 and CmDNAJ3 were the key genes for responding to salt stress, ABA stress and drought stress. Thisstudy provides a theoretical reference for analyzing the DNAJ gene function of melon.
|
Received: 31 May 2024
|
|
Corresponding Authors:
*limengscience@163.com;xhj234@126.com
|
|
|
|
[1] 段敏杰, 李怡斐, 杨小苗, 等. 2023. 辣椒锌指蛋白 DnaJ-Like 基因家族鉴定及对高温胁迫的表达响应[J]. 生物技术通报 , 39(01): 187-198. (Duan M J, Li Y F, Yang X M, et al.2023. Identification of zinc finger protein DnaJ-Like gene family in Capsicum annuum and its expres-sion analysis responses to high temperature stress[J]. Biotechnology Bulletin, 39(01): 187-198.) [2] 樊芳菲, 杨暹, 康云艳, 等. 2018. 植物 DnaJ 蛋白的研究进展[J]. 分子植物育种 , 16(06): 2028-2034. (Fan F F, Yang X, Kang Y Y, et al.2018. Research progress on DnaJ proteins in plants[J]. Molecular Plant Breeding, 16(06): 2028-2034.) [3] 范婷婷.2018. ABA 和乙烯对树莓果实成熟软化的影响[D]. 硕士学位论文, 东北农业大学, 导师: 杨国慧, pp. 1-8. (Fan T T.2018. ABA and ethylene effection on ripening and softening of raspberry fruit[D]. Thesis for M. S., Northeast Agricultural University, Supervisor: Yang G H, pp. 1-8.) [4] 方鑫, 杨峥, 王晨旭, 等. 2022. 丹参 DnaJ 基因的鉴定及胁迫响应分析[J]. 南京农业大学学报 , 45(01): 94-102. (Fang X, Yang Z, Wang C X, et al.2022. Identification and stress response analysis of DnaJ gene in Salvia milt-iorrhiza[J]. Journal of Nanjing Agricultural University,45(01): 94-102.) [5] 解备涛, 王庆美, 张海燕, 等. 2016. 植物生长调节剂对甘薯产量和激素含量的影响[J]. 华北农学报, 31(01): 155-161. (Xie B T, Wang Q M, Zhang H Y, et al.2016. The effect of plant growth regulators on the yield and phyto-hormone concentration in sweet potato[J]. Acta Agricul-turae Boreali-Sinica, 31(01): 155-161.) [6] 孔凡英, 邓永胜, 孟庆伟. 2011. 叶绿体 J 蛋白研究进展[J]. 植物生理学报, 47(03): 235-243. (Kong F Y, Deng Y S, Meng Q W.2011. Research advancement of J proteins in chloroplast[J]. Plant Physiology Journal, 47(03): 235-243.) [7] 李丽丽.2023. 甜瓜耐冷相关基因的挖掘及功能验证[D]. 博士学位论文, 河南农业大学, 导师: 胡建斌, pp. 1-30. (Li L L.2023. Mining cold-tolerance related genes and functional verification in melon[D]. Thesis for Ph. D., Henan Agricultural University, Supervisor: Hu J B, pp.1-30.) [8] 梁语珊, 张赵杨, 岳婷茹, 等. 2025. 甜瓜 α-葡萄糖苷酶和 β-葡萄糖苷酶基因家族鉴定及表达模式分析[J]. 生物工程学报, 41(02): 791-808. (Liang Y S, Zhang Z Y, Yue T R, et al.2025. Identification and expression pattern anal-ysis of α -glucosidase and β -glucosidase gene family members in melon[J]. Chinese Journal of Biotechnolo-gy, 41(2): 791-808.) [9] 刘亚西, 毛芮, 杨梦含, 等. 2024. 外源激素对干旱胁迫下黑麦草生理特性的影响及抗旱性评价[J]. 草业科学, 41(02): 425-436. (Liu Y X, Mao R, Yang M H, et al.2024. Effects of exogenous hormones on physiological charac-teristics and drought resistance of Lolium perenne under drought stress[J]. Pratacultural Science, 41(02): 425-436.) [10] 芦禹冰, 万鲁河. 2021. 脱落酸对植物生长的作用研究[J]. 哈尔滨师范大学自然科学学报, 37(06): 84-88. (Lu Y B, Wan L H.2021. Study on the effect of abscisic acid on plant growth[J]. Natural Science Journal of Harbin Nor-mal University, 37(06): 84-88.) [11] 祁茂冬, 谢鑫, 魏凤菊. 2019. 禾本科植物 HSP70 研究进展[J]. 植物生理学报 , 55(08): 1054-1062. (Qi M D, Xie X, Wei F J.2019. Research progress of HSP70s in Poa-ceae[J]. Plant Physiology Journal, 55(08): 1054-1062.) [12] 宋蒙飞, 王星, 张开京, 等. 2021. 黄瓜 DnaJ 基因家族鉴定及对高温胁迫的表达响应[J]. 南京农业大学学报 , 44(02): 267-277. (Song M F, Wang X, Zhang K J, et al.2021. Identification of DnaJ gene family in cucumber and its expression response to high temperature stress[J]. Journal of Nanjing Agricultural University, 44(02): 267-277.) [13] 孙斌, 孔凡娜, 殷吉强. 2022. 条斑紫菜 DnaJ 基因家族鉴定及其在环境胁迫下的表达分析[J]. 中国海洋大学学报 , 52(12): 51-61. (Kong B, Kong F N, Yin J Q.2022. Identification and expression analysis of DnaJ gene fam-ily in Pyropia yezoensis under environmental stress[J]. Periodical of Ocean University of China, 52(12): 51-61.) [14] 王成慧.2020. 薄皮甜瓜 CmLOX08 基因的克隆及其在干旱和盐胁迫中的功能分析[D]. 博士学位论文, 沈阳农业大学, 导师: 齐红岩, pp. 1-12. (Wang C H.2020. Clon-ing and functional analysis of CmLOX08 in drought and salt stress from oriental melon(Cucumis melo var. Maku-wa Makino)[D]. Thesis for Ph.D., Shenyang Agricultur-al University, Supervisor: Qi H Y, pp. 1-12.) [15] 吴毅, 冯雅岚, 王添宁, 等. 2024. 小麦及其祖先物种 Hsp70 基因家族鉴定与表达分析 [J/OL]. 草业学报 , 1-15. (Wu Y, Feng Y L, Wang T N, et al.2024. Genome-wide identification and expression analysis of the Hsp70 gene family in wheat and its ancestral species[J/OL]. Acta Prataculturae Sinica, 1-15.) [16] 谢志明, 玛依努尔•吾斯曼, 覃志强, 等. 2023. 盐胁迫对 4 种甜瓜种子萌发及幼苗生理特性的影响[J]. 江苏农业科学, 51(11): 146-152. (Xie Z M, MaYiNuEr•W S M, Qin Z Q, et al.2023. Effects of salt stress on the germination of 4 kinds of melon seeds and the physiological charac-teristics of seedlings[J]. Jiangsu Agricultural Sciences,51(11): 146-152.) [17] 徐珍珍, 郭琪, 刘静, 等. 2015. 雷蒙德氏棉 DnaJ 蛋白的生物信息学预测及盐胁迫下的表达分析[J]. 棉花学报, 27(05): 391-400. (Xu Z Z, Guo Q, Liu J, et al.2015. Ge-nome-wide identification and expression pattern analy-sis of the DnaJ protein family in Gossypium raimondii under salt stress using a bioinformatics method[J]. Cot-ton Science, 27(05): 391-400.) [18] 薛淑媛, 朱世东, 李雪, 等. 2013. 外源亚精胺对盐胁迫下甜瓜幼苗光合和超微结构的影响[J]. 江苏农业学报, 29(03): 613-618. (Xue S Y, Zhu S D, Li X, et al.2013. Ef-fects of exogenous spermidine on photosynthetic charac-teristics and ultra structure of salt-stressed muskmelon seedlings[J]. Jiangsu Journal of Agricultural Sciences,29(03): 613-618.) [19] 杨英英.2022. 楸树 DnaJ 基因家族分析以及 CbuDnaJ49 在叶色调控中的功能研究[D]. 三峡大学, 硕士论文, 指导老师: 陈发菊, pp. 1-30. (Yang Y Y.2022. Identifica-tion and evolution analysis of the DnaJ gene family in Catalpa bungei and study on the function of CbuDnaJ49 gene in leaf color regulation[D]. China Three Gorges University, Thesis for M.S., Supervisor: Chen F J, pp. 1-30. [20] 张驰, 刘丹丹, 刘建中. 2018. 植物 J 蛋白的生物学功能及其作用机制[J]. 浙江大学学报, 44(03): 275-282. (Zhang C, Liu D D, Liu J Z.2018. Biological functions and ac-tion mechanisms of J-domain proteins in plants[J]. Jour-nal of Zhejiang University, 44(03): 275-282.) [21] 张帅博, 尹金鹏, 王吉庆, 等. 2024. 甜瓜 CmHXK 基因家族的鉴定及响应非生物胁迫的表达分析[J]. 生物技术通报 , 40(12): 102-112. (Zhang S B, Yin J P, Wang J P, et al.2024. Identification of the HXK gene fami-ly in Cucumis melo and their expression analysis un-der abiotic stresses[J]. Biotechnology Bulletin, 40(12): 102-112.) [22] 赵旭, 刘向国, 王爱荣. 2011. 水稻 DnaJ 蛋白的生物信息学分析[J]. 亚热带农业研究 , 7(03): 206-211. (Zhao X, Liu X G, Wang A R.2011. Bioinformatic analysis of the DnaJ protein family in rice[J]. Subtropical Agriculture Research, 7(03): 206-211.) [23] 郑晓瑜, 郭晋艳, 张毅, 等. 2011. 植物非生物胁迫诱导启动子顺式作用元件的研究方法[J]. 植物生理学报 , 47(02): 129-135. (Zheng X Y, Guo J Y, Zhang Y, et al.2011. Research methods of cis-Acting elements in plant abiotic stress inducible promoters[J]. Plant Physiology Journal, 47(02): 129-135.) [24] Chayut, N, Yuan H, Ohali S, et al.2015. A bulk segregant tran-scriptome analysis reveals metabolic and cellular pro-cesses associated with orange allelic variation and fruitβ-carotene accumulation in melon fruit[J]. BMC Plant Bi-ology, 15: 274. [25] Kang Y, Fan F, Yang X, et al.2017. The DnaJ gene family in pepper(Capsicum annuum L.): Comprehensive identifi-cation, characterization and expression profiles[J]. Fron-tiers in Plant Science, 8689. [26] Li M, Duan X Y, Gao G, et al.2022. CmABF1 and CmCBF4 cooperatively regulate putrescine synthesis to improve cold tolerance of melon seedlings[J]. Horticulture Re-search, 9: uhac002. [27] Latrasse D, Rodriguez-Granados NY, Veluchamy A, et al.2017. The quest for epigenetic regulation underlying unisexual flower development in Cucumis melo[J]. Epi-genet Chromatin, 10: 22. [28] Miernyk A J.2001. The J-domain proteins of Arabidopsis thali-ana: An unexpectedly large and diverse family of chap-erones[J]. Cell Stress Chaperones, 6(3): 209-218. [29] Mirva P, Yagut A, Virpi P, et al.2006. Chloroplast-mediated regulation of nuclear genes in Arabidopsis thaliana in the absence of light stress[J]. Physiological Genomics, 25(1): 142-145. [30] Scarpeci T E, Zanor M I, Carrillo N, et al.2008. Generation of superoxide anion in chloroplasts of Arabidopsis thali-ana during active photosynthesis: A focus on rapidly in-duced genes[J]. Plant molecular biology, 66(4): 361-378. [31] Verma A K, Tamadaddi C, Tak Y, et al.2019. The expanding world of plant J-domain proteins[J]. Critical Reviews in Plant Sciences, 38(5-6): 382-400. [32] Wang G D, Kong F Y, Zhang S, et al.2015. A tomato chloro-plast-targeted DnaJ protein protects rubisco activity un-der heat stress[J]. Journal of Experimental Botany, 66(11): 3027-3040. |
|
|
|