|
|
Cloning and Expression Pattern Analysis of BnaNAC14.1 Gene in Brassica napus |
ZHANG Bing-Xin, ZHU Jin-Bo, LIU Cui, LI Qing-Yang, CUI Peng, LIU Hong-Bo* |
College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China |
|
|
Abstract NAC transcription factors are widely involved in plant growth and development and abiotic stress response. In this study, the BnaNAC14.1 gene was cloned from the 'Zhongshuang 11' cDNA of Brassica napus by RT-PCR. Bioinformatics analysis showed that the coding sequence of BnaNAC14.1 gene was 1 908 bp, and encoded 635 amino acids, including the NAM conserved domain. The pCAMBIA1305.1-35S-sGFP-BnaNAC14.1 fusion expression vector was constructed and transformed into tobacco (Nicotiana tabacum) leaf cells by Agrobacterium tumefaciens-mediated transformation. The results of subcellular localization showed that BnaNAC14.1 localized in the nucleus; The recombinant vector pGBKT7-BD-BnaNAC14.1 was transformed into yeast (Saccharomyces cerevisiae) strain Y2HGold, and blue monoclonal colonies were observed on SD/-Trp+X-α-gal medium which indicated that the BnaNAC14.1 had transcriptional activation activity. The expression pattern demonstrated that the BnaNAC14.1 had relatively higher expression levels in flowers and development seeds than that in roots, stems and leaves. The results of qRT-PCR showed that BnaNAC14.1 gene was significantly up-regulated by salt, drought and exogenous hormones abscisic acid (ABA), and inhibited by indoleacetic acid (IAA) and methyl jasmonate (MeJA). The above results preliminarily identified that BnaNAC14.1 gene might be involved in abiotic stress and hormone response, and play an important role in seed development. This study provides theoretical support for further study on the BnaNAC14.1 biological function and rapeseed breeding with high quality and stress resistance.
|
Received: 09 February 2023
|
|
Corresponding Authors:
* hbliu@zafu.edu.cn
|
|
|
|
[1] 苟艳丽, 张乐, 郭欢, 等. 2020. 植物AP2/ERF类转录因子研究进展[J]. 草业科学, 37(06): 1150-1159. (Gou Y L, Zhang L, Guo H, et al.2020. Research progress of plant AP2/ERF transcription factors[J]. Pratacultural Science, 37(06): 1150-1159.) [2] 郝丽芬. 2020. 油菜响应黑胫病差异表达基因分析及BnNAC61基因功能研究[D]. 博士学位论文, 内蒙古农业大学, 导师: 韩冰, pp. 53-66. (Hao L F.2020. Analysis of differentially expressed genes and function of BnNAC61 gene in response to black shin disease in rapeseed[D]. Thesis for Ph.D., Inner Mongolia Agricultural University, Supervisor: Han B, pp. 53-66.) [3] 黄星群, 赵小英, 贺热情, 等. 2012. 油菜种子的油脂和蛋白积累及相关基因表达的研究[J]. 激光生物学报, 21(06): 532-540. (Huang X Q, Zhao X Y, He R Q, et al.2012. Study on oil and protein accumulation and related gene expression of rape seed[J]. Chinese Journal of Laser Biology, 21(06): 532-540.) [4] 靳进朴, 郭安源, 何坤, 等. 2015. 植物转录因子分类、预测和数据库构建[J]. 生物技术通报, 31(11): 68-77. (Jin J P, Guo A Y, He K, et al.2015. Classification, prediction and database construction of plant transcription factors[J]. Biotechnology Bulletin, 31(11): 68-77.) [5] 李科友, 朱海兰. 2011. 植物非生物逆境胁迫DREB/CBF转录因子的研究进展[J]. 林业科学, 47(01): 124-134. (Li K Y, Zhu H L.2011. Research progress of DREB/CBF transcription factors under abiotic stress in plants[J]. Scientia Silvae Sinicae, 47(01): 124-134.) [6] 卢坤, 张琳, 曲存民, 等. 2015. 利用RNA-Seq鉴定甘蓝型油菜叶片干旱胁迫应答基因[J]. 中国农业科学, 48(4): 630-645. (Lu K, Zhang L, Qu C M, et al.2015. Identification of drought stress response genes in Brassica napus leaves by RNA-Seq[J]. Chinese Journal of Agricultural Sciences, 48(4): 630-645.) [7] 荣欢, 任师杰, 汪梓坪, 等. 2020. 植物NAC转录因子的结构及功能研究进展[J]. 江苏农业科学, 48(18): 44-53. (Rong H, Ren S J, Wang Z P, et al.2020. Research progress on structure and function of plant NAC transcription factors[J]. Jiangsu Agricultural Sciences, 48(18): 44-53.) [8] 王佳丽, 王鹤冰, 杨慧勤, 等. 2022. NAC转录因子在植物花发育中的作用[J]. 生物工程学报, 38(08): 2687-2699. (Wang J L, Wang H B, Yang H Q, et al.2022. The role of NAC transcription factor in plant flower development[J]. Chinese Journal of Bioengineering, 38(08): 2687-2699.) [9] 王建林, 胡书银, 唐佳, 等. 2002. 西藏油菜种质资源的抗逆性研究[J]. 西藏科技, 20(11): 63-64. (Wang J L, Hu S Y, Tang J, et al.2002. Study on stress resistance of rape germplasm resources in Xizang[J]. Xizang Science and Technology, 20(11): 63-64.) [10] 王立国, 傅明川, 李浩, 等. 2019. 陆地棉NAC转录因子基因GhSNAC1的克隆及其抗旱耐盐分析[J]. 农业生物技术学报, 27(04): 571-580. (Wang L G, Fu M C, Li H, et al.2019. Cloning of NAC transcription factor gene GhSNAC1 and analysis of drought and salt tolerance in upland cotton[J]. Journal of Agricultural Biotechnology, 27(04): 571-580.) [11] 王勇锋, 杨翠玲, 冷秋丽, 等. 2020. 甘蓝型油菜BnNAC转录因子鉴定与非生物胁迫响应分析[J]. 中国油料作物学报, 42(04): 545-553. (Wang Y F, Yang C L, Leng Q L, et al.2020. Identification of BnNAC transcription factors and abiotic stress response in Brassica napus[J]. Chinese Journal of Oil Crops, 42(04): 545-553.) [12] 张恺恺, 杨立莹, 丰美静, 等. 2022. 曼地亚红豆杉NAC基因家族鉴定及表达分析[J]. 林业科学研究, 35(02): 97-103. (Zhang K K, Yang L Y, Feng M J, et al.2022. Identification and expression analysis of NAC gene family in Taxus Mandia[J]. Forestry Research, 35(02): 97-103.) [13] 周鸿慧, 黄红, 徐彬磊, 等. 2017. NAC转录因子在植物对生物和非生物胁迫响应中的功能[J]. 植物生理学报, 53(08): 1372-1382. (Zhou H H, Huang H, Xu B L, et al.2017. Function of NAC transcription factor in plant response to biological and abiotic stress[J]. Acta Phytophysiologica Sinica, 53(08): 1372-1382.) [14] Baillo E H, Kimotho R N, Zhang Z B, et al.2019. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement[J]. Genes, 10(10): 771-794. [15] Chen X, Wang Y F, Lv B, et al.2014. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway[J]. Plant and Cell Physiology, 55(3): 604-619. [16] Dung T L, Nishiyama R, Watanabe Y, et al.2011. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress[J]. DNA Research, 18(4): 263-276. [17] Fujita M, Fujita Y, Maruyama K, et al.2004. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway[J]. Plant Journal, 39(6): 863-876. [18] Hegedus D, Yu M, Baldwin D, et al.2003. Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress[J]. Plant Molecular Biology, 53(3): 383-397. [19] Huo K, Shui L, Mai Y, et al.2020. Effects of exogenous abscisic acid on oil content, fatty acid composition, biodiesel properties and lipid components in developing Siberian apricot (Prunus sibirica) seeds[J]. Plant Physiology and Biochemistry, 154: 260-267. [20] Jeong J S, Kim Y S, Redillas M C F R, et al.2013. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field[J]. Plant Biotechnology Journal, 11(1): 101-114. [21] Kim Y S, Kim S Y, Park J E, et al.2006. A membrane-bound NAC transcription factor regulates cell division in Arabidopsis[J]. Plant Cell, 18(11): 3132-3144. [22] Nakashima K, Takasaki H, Mizoi J, et al.2012. NAC transcription factors in plant abiotic stress responses[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms, 1819(2): 97-103. [23] Nakashima K, Tran L S, Van Nguyen D, et al.2007. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. Plant Journal, 51(4): 617-630. [24] Olsen A N, Ernst H A, Leggio L L, et al.2005. NAC Transcription factors: Structurally distinct, functionally diverse[J]. Trends in Plant Science, 10(2): 79-87. [25] Ooka H, Satoh K, Doi K, et al. 2003. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Research, 10(6): 239-247. [26] Ren T, Wang J, Zhao M, et al.2018. Involvement of NAC transcription factor SiNAC1 in a positive feedback loop via ABA biosynthesis and leaf senescence in foxtail millet[J]. Planta, 247(1): 53-68. [27] Riechmann J L, Heard J, Martin G, et al.2000. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes[J]. Science, 290(5499): 2105-2110. [28] Shao H B, Wang H Y, Tang X L.2015. NAC transcription factors in plant multiple abiotic stress responses: Progress and prospects[J]. Frontiers in Plant Science, 6: 902. [29] Thien N Q, Kisiala A, Andreas P, et al.2016. Soybean seed development: Fatty acid and phytohormone metabolism and their interactions[J]. Current Genomics, 17(3): 241-260. [30] Wu Y, Deng Z, Lai J, et al.2009. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses[J]. Cell Research, 19(11): 1279-1290. [31] Yarra R, Wei W.2021. The NAC-type transcription factor GmNAC20 improves cold, salinity tolerance, and lateral root formation in transgenic rice plants[J]. Functional & Integrative Genomics, 21(3/4): 473-487. [32] Yuan X, Wang H, Cai J, et al.2019. Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response[J]. BMC Plant Biology, 19: 278. [33] Zhang L, Lei D L, Deng X, et al.2020. Cytosolic glyceralde-hyde-3-phosphate dehydrogenase 2/5/6 increase drought tolerance via stomatal movement and reactive oxygen species scavenging in wheat[J]. Plant Cell & Environment, 43(4): 836-853. |
|
|
|