Abstract:Genome editing technology refers to a biotechnology enabling site-specific and heritable modifications of target genes within the genome. Among these technologies, CRISPR/Cas9 has emerged as the most widely adopted genome editing technologies due to its simplicity, high efficiency, and multiplex editing capability. It has been extensively applied in the genetic improvement of major oil crops including soybean (Glycine max), rapeseed (Brassica napus), camelina (Camelina sativa), and peanut (Arachis hypogaea). In this article, comprehensive overview of CRISPR/Cas genome editing technologies and their molecular mechanisms were provided, the metabolic pathway of fatty acid biosynthesis in plants was summarized, and recent advancements in genome editing for enhancing oil yield and improving fatty acid profiles were highlighted. The review provides technical support and guidance for creation of excellent germplasm and the cultivation of new varieties of oil crops through genome editing technologies.
张鸣, 张欣濡, 李明超, 李君. 基因组编辑技术及其在油料作物脂肪酸合成中的研究进展[J]. 农业生物技术学报, 2025, 33(12): 2703-2713.
ZHANG Ming, ZHANG Xin-Ru, LI Ming-Chao, LI Jun. Research Progress on Genome Editing Technologies and Its Application in Engineering Fatty Acid Biosynthesis of Oil Crops. 农业生物技术学报, 2025, 33(12): 2703-2713.
[1] 霍贯中, 张欣濡, 田士军, 等. 2025. CRISPR/Cas12a基因编辑技术在植物中的研究进展[J]. 生物技术通报, 41(6):1-11. (Huo G Z, Zhang X R, Tian S J, et al.2025. Current progress and applications of CRISPR/Cas12a gene editing technology in plants[J]. Biotechnology Bulletin, 41(6): 1-11.) [2] 李君, 张毅, 陈坤玲, 等. 2013. CRISPR/Cas系统: RNA 靶向的基因组定向编辑新技术[J]. 遗传, 35(11): 1265-1273. (Li J, Zhang Y, Chen K L, et al.2013. CRISPR/Cas: A novel way of RNA-guided genome editing[J]. Hereditas, 35(11): 1265-1273.) [3] 童朝云, 黄宇婷, 杨靖茹, 等. 2025. CRISPR/Cas基因编辑技术在抗除草剂作物育种中的研究进展[J]. 农业生物技术学报, 33(5): 1149-1162. (Tong Z Y, Huang Y T, Yang J R, et al.2025. Research progress of CRISPR/Cas gene editing technology in the breeding of herbicide-resistant crops[J]. Journal of Agricultural Biotechnology, 33(5): 1149-1162.) [4] 中华人民共和国农业农村部. 2023. 2023年农业转基因生物安全证书批准清单:农基安证字[2023]114号[EB/OL]. (2023-4-28)[2025-8-8]. (Ministry of Agriculture and Rural Affairs of the People's Republic of China.2023. List of approvals for biosafety certificates of agricultural genetically modified organisms in 2023: Agricultural Safety Certificate No.[2023]114[EB/OL].(2023-4-28)[2025-8-8]. [5] 宗媛, 高彩霞. 2019. 碱基编辑系统研究进展[J]. 遗传, 41(9): 777-800. (Zong Y, Gao C X.2019. Progress on base editing systems[J]. Hereditas, 41(9): 777-800.) [6] Azameti M K, Dauda W P.2021. Base editing in plants: Applications, challenges, and future prospects[J]. Frontiers in Plant Science, 12: 664997. [7] Aznar-Moreno J A, Durrett T P.2017. Simultaneous targeting of multiple gene homeologs to alter seed oil production in Camelina sativa[J]. Plant Cell Physiology, 58(7): 1260-1267. [8] Bates P D, Stymne S, Ohlrogge J, et al.2013. Biochemical pathways in seed oil synthesis[J]. Current Opinion in Plant Biology, 16(3): 358-364. [9] Belle J V, Schaart J G, Dechesne A C, et al.2025. Direct and indirect effects of multiplex genome editing of F5H and FAD2 in oil crop camelina[J]. Plant Biotechnology Journal, 23(5): 1399-1412. [10] Bharat S S, Li S Y, L J Y, et al.2020. Base editing in plants: Current status and challenges[J]. The Crop Journal, 8(3): 384-395. [11] Chen K L, Wang Y P, Zhang R, et al.2019. CRISPR/Cas genome editing and precision plant breeding in agriculture[J]. Annual Review of Plant Biology, 70(1): 667-697. [12] Chen P J, Liu D R.2023. Prime editing for precise and highly versatile genome manipulation[J]. Nature Reviews Genetics, 24(3): 161-177. [13] Chen Y Z, Fu M C, Li H, et al.2021. High-oleic acid content, nontransgenic allotetraploid cotton (Gossypium hirsutum L.) generated by knockout of GhFAD2 genes with CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 19(3): 424-426. [14] Clews A C, Ulch B A, Jesionowska M, et al.2024. Variety of plant oils: Species-specific lipid biosynthesis[J]. Plant and Cell Physiology, 65(6): 845-862. [15] Coniglio S, Shumskaya M, Vassiliou E.2023. Unsaturated fatty acids and their immunomodulatory properties[J]. Biology, 12(2): 279. [16] Jarvis B A, Romsdahl T B, McGinn M G, et al.2021. CRISPR/Cas9-induced fad2 and rod1 mutations stacked with fae1 confer high oleic acid seed oil in pennycress (Thlaspi arvense L.)[J]. Frontiers in Plant Science, 12: 652319. [17] Kantor A, McClements M E, MacLaren R E, et al.2020. CRISPR-Cas9 DNA base-editing and prime-editing[J]. International Journal of Molecular Sciences, 21(17): 6240. [18] Karunarathna N L, Wang H Y, Harloff H J, et al.2020. Elevating seed oil content in a polyploid crop by induced mutations in SEED FATTY ACID REDUCER genes[J]. Plant Biotechnology Journal, 18(11): 2251-2266. [19] Li B S, Sun C, Li J Y, et al.2024a. Targeted genome-modification tools and their advanced applications in crop breeding[J]. Nature Reviews Genetics, 25(9): 603-622. [20] Li H B, Zhou R N, Liu P Y, et al.2023. Design of high-monounsaturated fatty acid soybean seed oil using GmPDCTs knockout via a CRISPR-Cas9 system[J]. Plant Biotechnology Journal, 21(7): 1317. [21] Li J, Yu X X, Zhang C, et al.2022. The application of CRISPR/Cas technologies to Brassica crops: Current progress and future perspectives[J]. Abiotech, 3(2): 146-161. [22] Li W J, Li X, Wang C Y, et al.2024b. Expanding the targeting scope of CRISPR/Cas9-mediated genome editing by Cas9 variants in Brassica[J]. Abiotech, 5(2): 202-208. [23] Liao W Y, Guo R Z, Li J, et al.2025. CRISPR/Cas9-mediated mutagenesis of SEED FATTY ACID REDUCER genes significantly increased seed oil content in soybean[J]. Plant and Cell Physiology, 66(2): 273-284. [24] Liao W Y, Guo R Z, Qian K, et al.2024. The acyl-acyl carrier protein thioesterases GmFATA1 and GmFATA2 are essential for fatty acid accumulation and growth in soybean[J]. The Plant Journal, 118(3): 823-838. [25] Liu H, Lin B G, Ren Y, et al.2022a. CRISPR/Cas9-mediated editing of double loci of BnFAD2 increased the seed oleic acid content of rapeseed (Brassica napus L.)[J]. Frontiers in Plant Science, 13: 1034215. [26] Liu Y H, Du Z L, Lin S L, et al.2022b. CRISPR/Cas9-targeted mutagenesis of BnaFAE1 genes confers low-erucic acid in Brassica napus[J]. Frontiers in Plant Science, 13: 848723. [27] Lou H C, Li S J, Shi Z H, et al.2025. Engineering source-sink relations by prime editing confers heat-stress resilience in tomato and rice[J]. Cell, 188(2): 530-549.e20. [28] Ma J, Sun S, Whelan J, et al.2021. CRISPR/Cas9-mediated knockout of GmFATB1 significantly reduced the amount of saturated fatty acids in soybean seeds[J]. International Journal of Molecular Sciences, 22(8): 3877. [29] McGinn M, Phippen W B, Chopra R, et al.2019. Molecular tools enabling pennycress (Thlaspi arvense) as a model plant and oilseed cash cover crop[J]. Plant Biotechnology Journal, 17(4): 776-788. [30] Morineau C, Bellec Y, Tellier F, et al.2017. Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa[J]. Plant Biotechnology Journal, 15(6): 729-739. [31] Neelakandan A K, Wright D A, Traore S M, et al.2022. CRISPR/Cas9 based site-specific modification of FAD2 cis-regulatory motifs in peanut (Arachis hypogaea L)[J]. Frontier in Genetics, 13: 849961. [32] Nelson J W, Randolph P B, Shen S P, et al.2022. Engineered pegRNAs improve prime editing efficiency[J]. Nature Biotechnology, 40(3): 402-410. [33] Ozseyhan M E, Kang J L, Mu X P, et al.2018. Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa[J]. Plant Physiology and Biochemistry, 123: 1-7. [34] Pacesa M, Pelea O, Jinek M.2024. Past, present, and future of CRISPR genome editing technologies[J]. Cell, 187(5): 1076-1100. [35] Park M E, Kim H U.2022. Applications and prospects of genome editing in plant fatty acid and triacylglycerol biosynthesis[J]. Frontiers in Plant Science, 13: 969844. [36] Park M E, Choi H A, Lee K R, et al.2024. Identification of high linoleic acid varieties in tetraploid perilla through Gamma-ray irradiation and CRISPR/Cas9[J]. Plant Cell Physiology, 65(9): 1461-1473. [37] Park M E, Lee K R, Chen G Q, et al.2022. Enhanced production of hydroxy fatty acids in Arabidopsis seed through modification of multiple gene expression[J]. Biotechnology for Biofuels and Bioproducts, 15(1): 66. [38] Porokhovinova E A, Matveeva T V, Khafizova G V, et al.2022. Fatty acid composition of oil crops: Genetics and genetic engineering[J]. Genetic Resources and Crop Evolution, 69(6): 2029-2045. [39] Savadi S, Lambani N, Kashyap P L, et al.2017. Genetic engineering approaches to enhance oil content in oilseed crops[J]. Plant Growth Regulation, 83: 207-222. [40] Shi J H, Ni X Y, Huang J X, et al.2022. CRISPR/Cas9-mediated gene editing of BnFAD2 and BnFAE1 modifies fatty acid profiles in Brassica napus[J]. Genes, 13(10): 1681. [41] Song X G, Meng X B, Guo H Y, et al.2022. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size[J]. Nature Biotechnology, 40(9): 1403-1411. [42] Subedi U, Jayawardhane K N, Pan X, et al.2020. The potential of genome editing for improving seed oil content and fatty acid composition in oilseed crops[J]. Lipids, 55(5): 495-512. [43] Sun C, Lei Y, Li B S, et al.2024. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors[J]. Nature Biotechnology, 42(2): 316-327. [44] Tang S, Guo N, Tang Q Q, et al.2022. Pyruvate transporter BnaBASS2 impacts seed oil accumulation in Brassica napus[J]. Plant Biotechnology Journal, 20(12): 2406-2417. [45] Tang Y, Huang J, Ji H, et al.2022. Identification of AhFatB genes through genome-wide analysis and knockout of AhFatB reduces the content of saturated fatty acids in peanut (Arichis hypogaea L.)[J]. Plant Science, 319: 111247. [46] Tu T X, Song Z M, Liu X Y, et al.2022. A precise and efficient adenine base editor[J]. Molecular Therapy, 30(9): 2933-2941. [47] Tuncel A, Pan C T, Clem J S, et al.2025. CRISPR-Cas applications in agriculture and plant research[J]. Nature Reviews Molecular Cell Biology, 26(6): 419-441. [48] Virdi K S, Spencer M, Stec A O, et al.2020. Similar seed composition phenotypes are observed from CRISPR-generated in-frame and knockout alleles of a soybean KASI ortholog[J]. Frontiers in Plant Science, 11: 1005. [49] Wang N, Tao B L, Mai J M, et al.2023. Kinase CIPK9 integrates glucose and abscisic acid signaling to regulate seed oil metabolism in rapeseed[J]. Plant Physiology, 191(3): 1836-1856. [50] Ye J, Wu X W, Li X, et al.2025. Manipulation of seed coat content for increasing oil content via modulating BnaMYB52 in Brassica napus[J]. Cell Reports, 44(2): 115280. [51] Zhang K, He J J, Yin Y T, et al.2022. Lysophosphatidic acid acyltransferase 2 and 5 commonly, but differently, promote seed oil accumulation in Brassica napus[J]. Biotechnology for Biofuels and Bioproducts, 15(1): 83. [52] Zhang Q, Liu L, Xiao Z F, et al.2023. Construction and functional evaluation of CRISPR/Cas9 multiple knockout vectors of the FAD2 gene family[J]. Agronomy, 13(7): 1737. [53] Zhukov A, Popov V.2022. Synthesis of C20-38 fatty acids in plant tissues[J]. International Journal of Molecular Sciences, 23(9): 4731.