Molecular Characterizations of atic Gene and the Correlation Analysis Between Its Expression Levels and Inosine Monophosphate Content in Large Yellow Croaker (Larimichthys crocea)
HE Liang-Yin1,2, ZHANG Ya-Ting3, YOU Yu-Xin3, ZENG Zhi-Jun1, SUN Zhao-Han4, SHI Xiao-Li1,2,*
1 College of Marine Sciences, Ningde Normal University, Ningde 352100, China; 2 Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde 352100, China; 3 College of Biological Sciences and Engineering, Ningde Normal University, Ningde 352100, China; 4 Ningde Yiye Marine Industry Development Co., Ltd., Ningde 352103, China
Abstract:The declination of flesh quality has become a major concern in the cultivation of large yellow croaker (Larimichthys crocea).For investigating the critical roles of aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) in inosine monophosphate (IMP) formation, the relevant CDS of Lcatic was cloned and characterized. The CDS of Lcatic was 1 776 bp and encoded a polypeptide of 591 amino acids, for which the molecular weight was estimated to be 64.08 kD, with 1 N-glycosylation site and 56 phosphorylation sites. The deduced protein, LcATIC, possesses methylglyoxal synthetase (MGS) and aminoimidazole carboxamide ribonucleotide formyltransferase (AICARFT))/IMP cyclohydrolase (IMPCHase) structural domains. The genomic DNA sequence of Lcatic is subdivided into 15 exons and 14 introns, exhibiting a genome organization similar to that of atic in other teleost fish. Phylogenetic analysis of the amino acid sequence revealed that LcATIC aligned most with the Collichthys lucidus ATIC, sharing the similarity of 99.5%, they gathered in one branch and then joined the teleost branch. Lcatic mRNA was found to be expressed at a high level in the liver tissue, expressed at intermediate levels in gill, brain, intestine, and muscle tissue, and expressed at a low level in the stomach tissue. With the increase of body weight, Lcatic expression in muscle tissues of L. crocea showed a gradually increasing trend, which was consistent with the trend of gradually increasing IMP content in these muscle tissues. The Spearman correlation analysis further showed that the Lcatic mRNA expression was positively correlated with IMP content in the muscles of different-sized L. crocea (P<0.05, rs=0.931). These results suggest the critical role of Lcatic in IMP synthesis and provide basis reference for the study of the regulation mechanism of Lcatic on flesh quality of large yellow croaker.
何亮银, 张雅婷, 尤钰鑫, 曾智军, 孙赵韩, 史晓丽. 大黄鱼atic基因的分子特性及其表达量与肌苷酸含量的相关性分析[J]. 农业生物技术学报, 2025, 33(7): 1568-1579.
HE Liang-Yin, ZHANG Ya-Ting, YOU Yu-Xin, ZENG Zhi-Jun, SUN Zhao-Han, SHI Xiao-Li. Molecular Characterizations of atic Gene and the Correlation Analysis Between Its Expression Levels and Inosine Monophosphate Content in Large Yellow Croaker (Larimichthys crocea). 农业生物技术学报, 2025, 33(7): 1568-1579.
[1] 包阿东, 刘长青, 刘帅, 等. 2008. 鸡肉风味候选基因AMPD1、ADSL、ATIC的分析[J]. 中国畜牧兽医, (02): 32-35. (Bao A D, Liu C Q, Liu S, et al. 2008. Candidate gene AMPD1, ADSL and ATIC of meat quality and flavor in chicken[J]. China Animal Husbandry and Veterinary Medicine, (02): 32-35.) [2] 郭俣, 刘长青, 陆涛峰, 等. 2010. 北京油鸡purH基因结构与表达特征研究[J]. 激光生物学报, 19(03): 339-346. (Guo Y, Liu C Q, Lu T F, et al.2010. Characterization of expression of purH gene in Beijing fatty chicken (Gallus gallus)[J]. Acta Laser Biology Sinica, 19(03): 339-346.) [3] 何亮银, 李微, 唐小千, 等. 2016. 中国对虾蛋白磷酸酶1催化亚基β基因的克隆表达及特性分析[J]. 中国海洋大学学报(自然科学版), 46(11): 73-81. (He L Y, Li W, Tang X Q, et al.2016. Cloning, expression and characterization of protein phosphatase 1 catalytic subunit beta isoform in shrimp Fenneropenaeus chinensis[J]. Periodical of Ocean University of China, 46(11): 73-81.) [4] 何亮银, 史晓丽, 林佳阳, 等. 2024. 大黄鱼adsl基因的克隆及其表达量与肌苷酸含量的关联性分析[J]. 南方水产科学, 20(02): 111-118. (He L Y, Shi X L, Lin J Y, et al.2024. Cloning of adsl gene in Larimichthys crocea and analysis of its correlation between expression level and inosine content[J]. South China Fisheries Science, 20(2): 111-118.) [5] 李金玲, 李海涛, 高丽峰, 等. 2011. 猪ATIC基因SNPs位点分析和表达规律的研究[J]. 东北农业大学学报, 42(09): 22-26. (Li J L, Li H T, Gao L F, et al.2011. SNPs site analysis and expression characterization of ATIC gene in swine[J]. Journal of Northeast Agricultural University, 42(09): 22-26.) [6] 刘耀文, 柳序, 曲湘勇, 等. 2019. 溆浦鹅ADSL基因的克隆及其结构与表达分析[J]. 农业生物技术学报, 27(2): 289-296. (Liu Y W, Liu X, Qu X Y, et al.2019. Cloning, structure and expression analysis of ADSL gene in Xupu goose (Anser cygnoides)[J]. Journal of Agricultural Biotechnology, 27(2): 289-296.) [7] 罗玉龙, 刘畅, 李文博, 等. 2019. 两种饲养方式下苏尼特羊肉中鲜味物质含量及相关调控基因表达量[J]. 食品科学, 40(13): 8-13. (Luo Y L, Liu C, Li W B, et al.2019. Effects of two different feeding patterns on umami substances and expression of related genes in Sunit sheep meat[J]. Food Science, 40(13): 8-13.) [8] 农业农村部渔业渔政管理局. 2024. 中国渔业统计年鉴[M]. 北京: 中国农业出版社, pp. 22. (Fisheries and Fisheries Administration of the Ministry of Agriculture and Rural Affairs. 2024. China Fishery Statistical Yearbook[M]. Beijing: China Agriculture Press, pp. 22.) [9] 苏换换, 朱华平, 刘志刚, 等. 2020. 碱胁迫对三种罗非鱼atic基因表达的影响[J]. 基因组学与应用生物学, 39(6): 2498-2506. (Su H H, Zhu H P, Liu Z G, et al.2020. Effects of alkali stress on atic gene expression of three tilapia[J]. Genomics and Applied Biology, 39(6): 2498-2506.) [10] 束婧婷, 李慧芳, 张学余, 等. 2009. PURH基因对鸡肉肌苷酸含量的遗传效应及其表达[J]. 农业生物技术学报, 17(05): 779-785. (Shu J T, Li H F, Zhang X Y, et al.2009. Genetic effect of PURH gene on muscle inosine monophosphate content and its expression characterization in chicken[J]. Journal of Agricultural Biotechnology, 17(05): 779-785.) [11] 徐善金, 虞德兵, 杜文兴. 2011. 肌苷酸及其相关酶的研究进展[J]. 生物技术通报, (3): 44-53. (Xu S J, Yu D B, Du W X. 2011. Current research advances in IMP and related enzymes[J]. Biotechnology Bulletin, (3): 44-53.) [12] 闫世雄, 赵净颖, 王秋婷, 等. 2019. 武定鸡和大围山微型鸡肌苷酸含量与PURH基因表达差异研究[J]. 中国家禽, 41(12): 47-50. (Yan S X, Zhao J Y, Wang Q T, et al.2019. Differences of inosine monophosphate content and PURH gene expression between Wuding chicken and Dweishan mini chicken[J]. China Poultry, 41(12): 47-50.) [13] 张学余, 束婧婷, 苏一军, 等. 2012. 肌苷酸合成酶系PURH基因对苏禽乌骨鸡胸肌肌苷酸含量的关联分析[J]. 江西农业大学学报, 34(03): 148-152. (Zhang X Y, Shu J T, Su Y J, et al.2012. Analysis of the correlation of PURH genes involved in de novo purine biosynthesis on IMP content in Suqin silky[J]. Acta Agriculturae Universitatis Jiangxiensis, 34(03): 148-152.) [14] 朱荣生, 王怀中, 刘俊珍, 等. 2020. PurH基因在大蒲莲猪及其杂交后代肌肉中表达及其与肌苷酸含量关联分析[J]. 家畜生态学报, 41(04): 22-27. (Zhu R S, Wang H Z, Liu J Z, et al.2020. Correlation between PurH gene expression and inosine 5'-monophosphate (IMP) content in Dapulian and its hybrid combination pigs[J]. Journal of Domestic Animal Ecology, 41(4): 22-27) [15] Blonde G D, Spector A C.2017. An examination of the role of L-glutamate and inosine 5'-monophosphate in hedonic taste-guided behavior by mice lacking the T1R1 + T1R3 receptor[J]. Chemical Senses, 42(5): 393-404. [16] Bonagurio L P, Murakami A E, Moreira C A, et al.2022. Dietary supplementation with inosine-5'-monophosphate improves the functional, energetic, and antioxidant status of liver and muscle growth in pigs[J]. Scientific Reports, 12: 350. [17] He L Y, Shi X L, Han K H, et al.2024. Molecular characterization of adenosine monophosphate deaminase 1 and the correlation analysis between its mRNA expression levels and inosine monophosphate content in large yellow croaker (Larimichthys crocea)[J]. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 272: 110966. [18] Huang Z W, Zhang J, Gu Y L, et al.2022a. Research progress on inosine monophosphate deposition mechanism in chicken muscle[J]. Critical Reviews in Food Science and Nutrition, 62(4): 1062-1078. [19] Huang Z W, Zhang, J, Gu, Y L.et al.2022b. Analysis of the molecular mechanism of inosine monophosphate deposition in Jingyuan chicken muscles using a proteomic approach[J]. Poultry Science, 101, 101741. [20] Jones B C, Rocker M M, Keast R S J, et al.2022. Systematic review of the odorous volatile compounds that contribute to flavour profiles of aquatic animals[J]. Reviews in Aquaculture, 14(3): 1418-1477. [21] Livak K J, Schmittgen T D.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 25(4): 402-408. [22] Ma R, Meng Y Q, Zang W B, et al.2020. Comparative study on the organoleptic quality of wild and farmed large yellow croaker Larimichthys crocea[J]. Journal of Oceanology Limnology, 38(01): 262-276. [23] Maga J A.1994. Umami Flavour of Meat, in: Shahidi F.(Ed.), Flavor of Meat and Meat Products[M]. Springer US, Boston, MA, pp. 98-115. [24] Mu P F, Wang Y H, Ao J Q, et al.2018. Molecular cloning and bioactivity of an IL-2 homologue in large yellow croaker (Larimichthys crocea)[J]. Fish & Shellfish Immunology, 81: 309-317. [25] Ni L Y, Guan K L, Zalkin H, et al.1991. De novo purine nucleotide biosynthesis: Cloning, sequencing and expression of a chicken PurH cDNA encoding 5-aminoimidazole-4-carboxamide-ribonucleotide transformylase-IMP cyclohydrolase[J]. Gene, 106(2): 197-205. [26] Rayl E A, Moroson B A, Beardsley G P.1996. The human purH gene product, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase. Cloning, sequencing, expression, purification, kinetic analysis, and domain mapping[J]. Journal of Biological Chemistry, 271(4): 2225-2233. [27] Surówka K, Rzepka M, Özoğul F, et al.2021. Nucleotide degradation, biogenic amine level and microbial contamination as quality indicators of cold-stored rainbow trout (Oncorhynchus mykiss) gravad[J]. Food Chemistry, 346:128904. [28] Wang J, Jiang H Q, Alhamoud Y, et al.2022. Integrated metabolomic and gene expression analyses to study the effects of glycerol monolaurate on flesh quality in large yellow croaker (Larimichthys crocea)[J]. Food Chemistry, 367: 130749. [29] Xiao X Q, Li M Y, Wang K R, et al.2011. Characterization of large yellow croaker (Pseudosciaena crocea) β-actin promoter supports β-actin gene as an internal control for gene expression modulation and its potential application in transgenic studies in fish[J]. Fish & Shellfish Immunol, 30: 1072-1079. [30] Yu S, Wang G, Liao J, et al.2021. A functional mutation in the AMPD1 promoter region affects promoter activity and breast meat freshness in chicken[J]. Animal Genetics, 52: 121-125. [31] Yuan T, Gu J R, Gu W B, et al.2011. Molecular cloning, characterization and expression analysis of adenylosuccinate lyase gene in grass carp (Ctenopharyngodon idella)[J]. Molecular Biology Reports, 38: 2059-2065. [32] Zhang J, Hu H H, Mu T, et al.2020. Correlation analysis between AK1 mRNA expression and inosine monophosphate deposition in Jingyuan chickens[J]. Animals, 10(3): 439. [33] Zhou Y H, Zuo A L, Li Y J, et al.2022. Molecular characterization of adenosine monophosphate deaminase 1 and its regulatory mechanism for inosine monophosphate formation in triploid crucian carp[J]. Frontiers in Physiology, 13: 970939. [34] Zhuang J C, Abdullah, Wang Y C, et al.2022. Evaluating dynamic effects of dietary glycerol monolaurate on the productive performance and flesh quality of large yellow croaker (Larimichthys crocea)[J]. Food Chemistry, 387: 132833.