Isolation and Identification of Trichoderma spp. Antagonizing the Pathogen of Atractylodes macrocephala Blight Disease and Their Control Effect
WANG Jiao1, LIU Xiao-Ning1, JIAO Tian-Tian1, SHEN Feng-Ying2, LIU Da-Qun1, LI Ya-Ning1*
1 College of Plant Protection/Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province /National Engineering Research Center for Agriculture in Northern Mountainous Areas, Hebei Agricultural University, Baoding 071001, China; 2 Hebei North University, Zhangjiakou 075000, China
Abstract:In recent years, due to continuous cropping, the problem of pests and diseases in Atractylodes macrocephala has been severe, resulting in a decrease in yield and a decline in quality. Among them, the A. macrocephala epidemic caused by mold has caused serious losses to A. macrocephala production. As one of the most important biocontrol fungi, Trichoderma spp. has good antagonistic effects on various plant pathogens and can produce various bioactive substances with antagonistic effects. In this study, healthy rhizosphere soil and underground rhizomes of A. macrocephala continuous cropping land were taken as materials, to screen antagonistic Trichoderma strains using the pathogen AMPH-1 of Phytophthora sansomeana as an indicator bacterium. Through the inhibitory effect and antagonistic level of antagonistic, 3 Trichoderma strains with better antibacterial effects, namely TPS-87, TPS-90, and TPS-99, were selected. The antibacterial rates against AMPH-1 were 77.19%, 80.04%, and 78.49%. With morphological and molecular identification, strain TPS-87 was determined as T. afroharzianum, while TPS-90 and TPS-99 were both T. atroviride. When applying the suspension of TPS-87, TPS-90, and TPS-99 with a concentration of 1×106 cfu/mL, and with the inoculation amount of 150 mL, all 3 strains of Trichoderma had a good promoting effect on A. macrocephala seedlings, and the greenhouse control effects on A. macrocephala blight disease were 61.54%, 53.85%, and 50%, respectively. This study provides biocontrol bacteria resources for the green prevention and control measures of A. macrocephala blight disease, and provides an important basis for the further development of biocontrol agents for the prevention and control of Chinese herbal medicine diseases.
王娇, 刘晓宁, 焦甜甜, 沈凤英, 刘大群, 李亚宁. 拮抗白术疫病病原菌的木霉菌的分离鉴定及其防效[J]. 农业生物技术学报, 2025, 33(4): 857-866.
WANG Jiao, LIU Xiao-Ning, JIAO Tian-Tian, SHEN Feng-Ying, LIU Da-Qun, LI Ya-Ning. Isolation and Identification of Trichoderma spp. Antagonizing the Pathogen of Atractylodes macrocephala Blight Disease and Their Control Effect. 农业生物技术学报, 2025, 33(4): 857-866.
[1] 方中达. 1998. 植病研究方法[M]. 中国农业出版社,北京, pp. 137-140.(Fang Z D.1998. Methods for Plant Disease Research.[M]. China Agriculture Press, Beijing, pp. 137-140.) [2] 高俊峰. 2008. 木霉菌T115D发酵条件及对大豆疫霉根腐病生物防治的研究[D]. 硕士学位论文, 黑龙江大学, 导师: 台莲梅, pp. 33-34.(Gao J F.2008. Study on fermentation condition of Trichoderma T115D and biocontrol of Trichoderma T115D against Phytophthora root rot of soybean[D]. Thesis for M.S., Heilongjiang Bayi Agricultural University, Supervisor: Tai L M, pp. 33-34.) [3] 国家药典委员会. 2020. 中华人民共和国药典: 2020年版. 一部[M]. 中国医药科技出版社, 北京, pp. 107. (Chinese Pharmacopoeia Commission. 2020. Pharmacopoeia of the People's Republic of China: 2020 Edition[M]. China Medical Science and Technology Press, Beijing, pp.107.) [4] 侯怡婷, 杨静雅, 韩丽, 等. 2020. 河北安国药用植物根区土壤木霉物种多样性[J]. 菌物研究, 18(03): 162-173.(Hou Y T, Yang Y J, Han L, et al.2020. Species diversity of Trichoderma in root zone soil of medicinal plants grown in Anguo Hebei, China[J].Journal of Fungal Research, 18(03): 162-173.) [5] 胡星, 白洋, 陈佳雯, 等. 2023. 深绿木霉对宿主植物朝鲜淫羊藿生长及药效成分含量的影响[J]. 中药材, (09): 2142-2148.(Hu X, Bai Y, Chen JW, et al. 2023. Effects of Trichoderma atrovirice# on the growth and pharmacological component content of the host plant Epimedium koreanum#[J]. Journal of Chinese Medicinal Materials, (09): 2142-2148.) [6] 蒋恒. 2013. 木霉菌对辣椒疫霉菌生防机制的研究[D]. 硕士学位论文, 浙江大学, 导师: 张敬泽, pp. 17. (Jiang H. 2013. Studies on mechanism of biocontrol of Trichoderma spp. against Phytophthora capsica[D]. Thesis for M.S., Zhejiang University, Supervisor: Zhang J Z, pp. 17.) [7] 李昕冉, 景涛, 孙晨曦, 等. 2023. 生防菌长枝木霉菌株T6及其代谢产物对立枯丝核菌拮抗作用[J]. 西北农业学报, 32(07): 1131-1137.(Li X R, Jing T, Sun C X, et al.2023. Antagonism of Trichoderma longibrachiatum isolate T6 and its metabolites to Rhizoctonia solani[J]. Acta Agriculturae Boreali-occidentalis Sinica, 32(07): 1131-1137.) [8] 梁松, 王建霞, 魏甜甜, 等. 2022. 深绿木霉T1和哈茨木霉T21抑菌活性及对番茄幼苗促生效果研究[J]. 天津农业科学, 28(06): 80-86.(Liang S, Wang J X, Wei T T, et al.2022. Study on the effects of Trichoderma atroviride T1 and Trichoderma harzianum T21 on antifungal activity and growth promoting effects of tomato seedlings[J]. Tianjin Agricultural Sciences, 28(06): 80-86.) [9] 刘青. 2019. 哈茨木霉菌拮抗辣椒疫霉的转录组学研究[D]. 硕士学位论文, 贵州大学, 导师: 王嘉福, 冉雪琴, pp. 53-55.(Liu Q.2019. Transcriptome research of Trichoderma harzianum antagonized Phytophthora capsica[D]. Thesis for M.S., Guizhou University, Supervisor: Wang J F, Ran X Q, pp. 53-55.) [10] 苗嘉琪. 2023. 加纳木霉对山新杨幼苗促生作用及其转录组构建[D].硕士学位论文, 东北林业大学, 导师: 刁桂萍, pp. 12-16.(Miao J Q.2023. Study on the growth promoting effect of Trichoderma ghanense on Populus davidiana × P. bolleana and its transcriptome construction[D]. Thesis for M.S., Northeast Forestry University, Supervisor: Diao G P, pp. 12-16.) [11] 祁智慧, 庄媛, 张海洋, 等. 2023. 粮食上木霉菌的分离鉴定及其生防效果[J]. 微生物学通报, 50(07): 2860-2875.(Qi Z H, Zhuang Y, Zhang H Y, et al.Isolation, identification, and biocontrol efficacy determination of Trichoderma spp. on grains[J]. Microbiology China , 50(07): 2860-2875.) [12] 田淼, 彭玉飞, 吕红, 等. 2023. 非洲哈茨木霉LMNS-M9的鉴定、生物学特性及其对藜麦的促生作用[J]. 微生物学通报, 50(09): 3848-3865.(Tian M, Peng YF, Lü H, et al.2023. Trichoderma afroharzianum LMNS-M9: Identification, biological characteristics, and growth-promoting effect on quinoa[J]. Microbiology China, 50(09): 3848-3865.) [13] 王秉丽, 李广纪, 郭玉人, 陈捷. 2012.不同野生木霉菌拮抗作用的比较[J].中国生物防治学报, 28(01): 147-151.(Wang B L, Li G J, Guo, Y R, et al.2012. Comparison of antagonistic effects of four Trichoderma strains[J]. Chinese Journal of Biological Control, 28(01): 147-151.) [14] 王高杨. 2017. 安国白术重茬病的病原鉴定及其防治药剂筛选[D]. 硕士学位论文, 河北农业大学, 导师: 李亚宁, pp. 2. (Wang G Y. 2017. Pathogen identification of Anguo Atractylodes macrocephalus disease and screening of prevention and control agents[D] Thesis for M.S., Hebei Agricultural University , Supervisor: Li Y N, pp. 2.) [15] 吴紫燕, 糜芳, 干华磊, 等. 2022.一株具有促生溶磷功能的木霉菌Tr940的筛选及其在番茄上的应用[J]. 生物灾害科学, 45(02): 156-164.(Wu Z Y, Mi F, Gan H L, et al.2022. Screening of a Trichoderma Tr940 with the function of promoting growth and phosphorus-solubilizing as well as its application in tomatoes[J]. Biological Disaster Science, 45(02): 156-164.) [16] 叶小波, 曾千春, 蒋细良. 2009. 木霉菌重寄生过程中的酶学研究进展[J] 中国生物防治, 25(03): 276-280.(Ye X B, Zeng Q C, Jiang X L.2009. Research advances on enzymes for mycoparasitism of Trichoderma[J]. Chinese Journal of Biological Control, 25(03): 276-280. ) [17] 姚彦坡. 2015. 防治马铃薯晚疫病和辣椒疫病木霉菌的筛选及生防机制研究[D]. 博士学位论文, 中国农业大学, 导师: 王琦, pp. 15-16.(Yao Y P.2015. Screening of antagonistic Trichoderma to potato late blight and pepper Phytophthora blight and study on the biocontrol mechanisms[D]. Thesis for Ph.D. , China Agricultural University, Supervisor: Wang Q, pp. 15-16.) [18] 尤佳琪, 杜然, 顾卫红, 等. 2022. 拟康宁木霉T-51菌株生物学特性及其生物防治潜力[J]. 植物保护学报, 49(03): 946-955.(You J Q, Du R, Gu W H, et al.2023. Biological characteristics and biological control potential of endophytic fungus Trichoderma koningiopsis strain T-51[J]. Journal of Plant Protection , 49(03): 946-955.) [19] 张国印, 梁巧兰, 魏列新. 2023. 深绿木霉TraT2A对5种作物的促生作用研究[J]. 干旱地区农业研究, (05): 256-263.(Zhang G Y, Liang Q L, Wei L X. 2023. Growth-promoting effect of Trichoderma atroviride# TraT2A on five plant species[J]. Agricultural Research in the Arid Areas, (05): 256-263. ) [20] 张昊, 张争, 许景升,等. 2008.一种简单快速的赤霉病菌单孢分离方法—平板稀释画线分离法[J]. 植物保护, (06): 134-136.(Zhang H, Zhang Z, Xu J S,et al. 2008. A rapid and simple method for obtaining single-spore isolates of Fusarium# species-agar dilution lineation separation[J]. Plant Protection, (06): 134-136.) [21] Alsayed A, Laure W.2021. Deciphering Trichoderma-plant-pathogen interactions for better development of biocontrol applications[J]. Journal of Fungi (Basel, Switzerland),7(1): 61. [22] Boregowda N, Nagaraja G, Sanjay C J.2023.Potential prospects of Trichoderma metabolites as biopesticides in managing plant health and diseases[M].//Abd-Elsalam K A, Alghuthaymi M A, Abdel-Momen S M (eds.). Biofungicides: Eco-Safety and Future Trends. CRC Press,Boca Raton, pp. 120-155. [23] Guzmán C H, Sara M P, Álvaro R G, et al.2021. Influence of fungicide application and vine age on Trichoderma diversity as source of biological control agents[J]. Agronomy, 11(3): 446. [24] He A T, Sun J N, Wang X H, et al.2019. Reprogrammed endophytic microbial community in maize stalk induced by Trichoderma asperellum biocontrol agent against Fusarium diseases and mycotoxin accumulation[J]. Fungal Biology, 123(6): 448-455. [25] Kasun M T, Dinushani A D, Alan J L P, et al.2020. Fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens[J].Frontiers in Cellular and Infection Microbiology, 10: 604923. [26] Khruengsai S, Pripdeevech P, D''Souza P E, et al.2021. Biofumigation activities of volatile compounds from two Trichoderma afroharzianum strains against Fusarium infections in fresh chilies[J]. Journal of the Science of Food and Agriculture, 101(14): 5861-5871. [27] Reithner B, Ibarra-Laclette E, Mach R L, et al.2011. Identification of mycoparasitism-related genes in Trichoderma atroviride[J]. Applied & Environmental Microbiology, 77(13): 4361-4370. [28] Swain H, Adak T, Mukherjee A K, et al.2018. Novel Trichoderma strains. isolated from tree barks as potential biocontrol agents and biofertilizers for direct seeded rice[J].Microbiological Research, 214: 83-90. [29] Yao Y P, Li Y, Huang Z L, et al.2016. Targeted selection of Trichoderma antagonists for control of pepper Phytophthora blight in China[J].Journal of Plant Diseases and Protection, 123(5): 215-223.