Research Progress on Candidate Genes for Disease Resistance Breeding in Pigs (Sus scrofa)
YANG Song-Bai1, HUANG Jing2, DUAN Xing1, WANG Han1, ZHOU Xiao-Long1,*, ZHAO A-Yong1,*
1 Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology•College of Veterinary Medicine, Zhejiang A&F University, Lin'an 311300, China;
2 Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
Abstract:Disease-resistant breeding is a crucial strategy to enhance the resilience of pig (Sus scrofa) populations against pathogen infections. The success of this approach relies on the comprehensive identification and investigation of candidate genes associated with disease resistance in the host. Therefore, identifying high-quality candidate genes is essential for disease-resistant breeding. This review summarized recent progress in research on candidate genes related to resistance against several significant viral infectious diseases in pigs, including Porcine reproductive and respiratory syndrome virus (PRRSV), African swine fever virus (ASFV), Classical swine fever virus (CSFV), Porcine epidemic diarrhea virus (PEDV), Pseudorabies virus (PRV), and Japanese encephalitis virus (JEV). Furthermore, the review discussed the challenges associated with the study of candidate genes for disease resistance and their application in breeding practices, and provides valuable insights for swine disease-resistant breeding research and practice in China.
[1] 郭宝清, 陈章水, 刘文兴, 等. 1996. 从疑似PRRS流产胎儿分离PRRSV的研究[J]. 中国畜禽传染病, (02): 3-7.
(Guo B Q, Chen Z S, Liu W X, et al.1996. Isolation and identification of Porcine reproductory and respiratory syndrome (PRRS) virus from aborted fetuses suspected of PRRS[J]. Chinese Journal of Preventive Veterinary Medicine, (02): 3-7.)
[2] 胡丹丹, 梁国濠, 高美娟, 等. 2024. 基因修饰技术在猪抗病育种中的应用研究进展[J]. 中国畜牧杂志, 60(2): 78-84.
(Hu D D, Liang G H, Gao M J, et al.2024. Research progress on gene modification technology in pig anti-viral breeding[J]. Chinese Journal of Animal Science, 60(2): 78-84.)
[3] 王超, 赵书红, 朱猛进. 2014. 猪抗病育种的相关问题及研究进展[J]. 中国畜牧杂志, 50(22): 67-72.
(Wang C, Zhao S H, Zhu M J.2014. Related problems and research progress in anti-disease breeding of pig[J]. Chinese Journal of Animal Science, 50(22): 67-72.)
[4] 王慧, 冯保亮, 吴丹, 等. 2023. CD163基因在猪繁殖与呼吸综合征抗病育种中的研究进展[J]. 畜牧兽医学报, 54(8): 3127-3138.
(Wang H, Feng B L, Wu D, et al.2023. Research progress of CD163 gene and disease-resistant breeding on porcine reproductive and respiratory syndrome[J]. Acta Veterinaria Et Zootechnica Sinica, 54(8): 3127-3138.)
[5] 印祥春. 2024. 猪流行性乙型脑炎的诊断与预防[J]. 今日养猪业, (1): 74-76.
(Yin X C. 2024. Diagnosis and prevention of Japanese encephalitis in pigs[J]. Pigs Today, (1): 74-76.)
[6] Ait-Ali T, Wilson A W, Finlayson H, et al.2009. Functional analysis of the porcine USP18 and its role during Porcine arterivirus replication[J]. Gene, 439(1-2): 35-42.
[7] Allende R, Lewis T, Lu Z, et al.1999. North American and European Porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions[J]. Journal of General Virology, 80(2): 307-315.
[8] Blome S, Staubach C, Henke J, et al.2017. Classical swine fever-an updated review[J]. Viruses, 9(4).
[9] Boulant S, Stanifer M, Lozach P Y.2015. Dynamics of virus-receptor interactions in virus binding, signaling, and endocytosis[J]. Viruses, 7(6): 2794-2815.
[10] Burkard C, Lillico S G, Reid E, et al.2017. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J]. PLOS Pathogens, 13(2): e1006206.
[11] Cai S, Zheng Z, Cheng J, et al.2022. Swine interferon-inducible transmembrane proteins potently inhibit African swine fever virus replication[J]. Frontiers in Immunology, 13: 827709.
[12] Calvert J G, Slade D E, Shields S L, et al.2007. Cd163 expression confers susceptibility to Porcine reproductive and respiratory syndrome viruses[J]. Journal of Virology, 81(14): 7371-7379.
[13] Chang X, Shi X, Zhang X, et al.2019. Ifi16 inhibits Porcine reproductive and respiratory syndrome virus 2 replication in a MAVS-dependent manner in MARC-145 cells[J]. Viruses, 11(12): 1160.
[14] Chang X, Shi X, Zhang X, et al.2020. Mir-382-5p promotes Porcine reproductive and respiratory syndrome virus (PRRSV) replication by negatively regulating the induction of typeⅠinterferon[J]. FASEB Journal, 34(3): 4497-4511.
[15] Chang X, Wang M, Li Z, et al.2024. FADD promotes type Ⅰ interferon production to suppress Porcine reproductive and respiratory syndrome virus infection[J]. Frontiers in Veterinary Science, 11: 1380144.
[16] Chang X B, Yang Y Q, Gao J C, et al.2018. Annexin A2 binds to vimentin and contributes to Porcine reproductive and respiratory syndrome virus multiplication[J]. Veterinary Research, 49(1): 75.
[17] Chen J, He W R, Shen L, et al.2015. The laminin receptor is a cellular attachment receptor for Classical swine fever virus[J]. Journal of Virology, 89(9): 4894-4906.
[18] Chen J, Hu J H, Sun R C, et al.2023a. Porcine Mx proteins inhibit Pseudorabies virus replication through interfering with early gene synthesis[J]. Veterinary Microbiology, 280: 109706.
[19] Chen J, Shi X, Zhang X, et al.2017. MicroRNA 373 facilitates the replication of Porcine reproductive and respiratory syndrome virus by its negative regulation of typeⅠinterferon induction[J]. Journal of Virology, 91(3): e01311-16.
[20] Chen J, Zhao S, Cui Z, et al.2022a. Microrna-376b-3p promotes Porcine reproductive and respiratory syndrome virus replication by targeting viral restriction factor TRIM22[J]. Journal of Virology, 96(2): e0159721.
[21] Chen Q, Liu Q, Liu D, et al.2014. Molecular cloning, functional characterization and antiviral activity of porcine DDX3X[J]. Biochemical and Biophysical Research Communications, 443(4): 1169-1175.
[22] Chen X, Liang Y, Weng Z, et al.2024. ALIX and TSG101 are essential for cellular entry and replication of two Porcine alphacoronaviruses[J]. PLOS Pathogens, 20(3): e1012103.
[23] Chen X, Shan T, Sun D, et al.2022b. Host zinc-finger cchc-type containing protein 3 inhibits Pseudorabies virus proliferation by regulating type I interferon signaling[J]. Gene, 827: 146480.
[24] Chen X, Sun D, Dong S, et al.2021. Host interferon-stimulated gene 20 inhibits Pseudorabies virus proliferation[J]. Virologica Sinica, 36(5): 1027-1035.
[25] Chen X, Zheng J, Li T, et al.2023b. Coreceptor AXL facilitates African swine fever virus entry via apoptotic mimicry[J]. Journal of Virology, 97(7): e0061623.
[26] Chen X, Zheng J, Liu C, et al.2023c. CD1D facilitates African swine fever virus entry into the host cells via clathrin-mediated endocytosis[J]. Emerging Microbes & Infections, 12(2): 2220575.
[27] Chen Z, Liu H, Zhu J, et al.2023d. Porcine promyelocytic leukemia protein isoforms suppress Japanese encephalitis virus replication in PK15 cells[J]. Virology Journal, 20(1): 1-11.
[28] Colicelli J2004. Human RAS superfamily proteins and related GTPases[J]. Science's STKE, 2004(250): re13-re13.
[29] Collins J E, Benfield D A, Christianson W T, et al.1992. Isolation of Swine infertility and respiratory syndrome virus (isolate atcc vr-2332) in north America and experimental reproduction of the disease in gnotobiotic pigs[J]. Journal of Veterinary Diagnostic Investigation, 4(2): 117-126.
[30] Costard S, Mur L, Lubroth J, et al.2013. Epidemiology of African swine fever virus[J]. Virus Research, 173(1): 191-197.
[31] Cui Z, Zhou L, Zhao S, et al.2023. The host E3-ubiquitin ligase TRIM28 impedes viral protein GP4 ubiquitination and promotes PRRSV replication[J]. International Journal of Molecular Sciences, 24(13).
[32] Das S, Ravi V,Desai A2011. Japanese encephalitis virus interacts with vimentin to facilitate its entry into porcine kidney cell line[J]. Virus Research, 160(1-2): 404-408.
[33] Delputte P L, Nauwynck H J2004. Porcine arterivirus infection of alveolar macrophages is mediated by sialic acid on the virus[J]. Journal of Virology, 78(15): 8094-8101.
[34] Delputte P L, Vanderheijden N, Nauwynck H J, et al.2002. Involvement of the matrix protein in attachment of Porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages[J]. Journal of Virology, 76(9): 4312-4320.
[35] Deng S, Yang C, Nie K, et al.2019. Host cell protein PSMB10 interacts with viral NS3 protein and inhibits the growth of Classical swine fever virus[J]. Virology, 537: 74-83.
[36] Dokland T2010. The structural biology of PRRSV[J]. Virus Research, 154(1-2): 86-97.
[37] Dong S, Kong N, Qin W, et al.2022a. ATG4B hinders Porcine epidemic diarrhea virus replication through interacting with TRAF3 and activating type-ⅠIFN signaling[J]. Veterinary Microbiology, 273: 109544.
[38] Dong S, Kong N, Shen H, et al.2022b. KLF16 inhibits PEDV replication by activating the typeⅠIFN signaling pathway[J]. Veterinary Microbiology, 274: 109577.
[39] Dong S, Kong N, Wang C, et al.2022c. FUBP3 degrades the Porcine epidemic diarrhea virus nucleocapsid protein and induces the production of typeⅠinterferon[J]. Journal of Virology, 96(13): e0061822.
[40] Dong S, Kong N, Zhang Y, et al.2022d. TARDBP inhibits Porcine epidemic diarrhea virus replication through degrading viral nucleocapsid protein and activating typeⅠinterferon signaling[J]. Journal of Virology, 96(10): e0007022.
[41] Dong W, Lv H, Li C, et al.2018. MAVS induces a host cell defense to inhibit CSFV infection[J]. Archives of Virology, 163(7): 1805-1821.
[42] Edwards S, Fukusho A, Lefèvre P C, et al.2000. Classical swine fever: The global situation[J]. Veterinary Microbiology, 73(2-3): 103-119.
[43] Fan S, Wu K, Zhao M, et al.2021. LDHB inhibition induces mitophagy and facilitates the progression of CSFV infection[J]. Autophagy, 17(9): 2305-2324.
[44] Fang L, Gao Y, Liu X, et al.2021. Long non-coding RNA lnc_000641 regulates Pseudorabies virus replication[J]. Veterinary Research, 52(1): 52.
[45] Ganges L, Crooke H R, Bohórquez J A, et al.2020. Classical swine fever virus: The past, present and future[J]. Virus Research, 289: 198151.
[46] Gao L, Guo X K, Wang L, et al.2013. MicroRNA 181 suppresses Porcine reproductive and respiratory syndrome virus (PRRSV) infection by targeting PRRSV receptor CD163[J]. Journal of Virology, 87(15): 8808-8812.
[47] Gao Q, Weng Z, Feng Y, et al.2023. KPNA2 suppresses Porcine epidemic diarrhea virus replication by targeting and degrading virus envelope protein through selective autophagy[J]. Journal of Virology, 97(12): e0011523.
[48] Gao Q, Zhang C, Xu X, et al.2024a. The death domain-associated protein suppresses Porcine epidemic diarrhea virus replication by interacting with signal transducer and activator of transcription 1 and inducing downstream ISG15 expression[J]. Veterinary Microbiology, 292: 110065.
[49] Gao X, You X, Wang G, et al.2024b. Mir-320 inhibits PRRSV replication by targeting PRRSV ORF6 and porcine CEBPB[J]. Veterinary Research, 55(1): 61.
[50] Guan K, Su Q, Kuang K, et al.2022. Mir-142-5p/FAM134b axis manipulates er-phagy to control PRRSV replication[J]. Frontiers in Immunology, 13: 842077.
[51] Guo C, Wang M, Zhu Z, et al.2019. Highly efficient generation of pigs harboring a partial deletion of the CD163 SRCR5 domain, which are fully resistant to Porcine reproductive and respiratory syndrome virus 2 infection[J]. Frontiers in Immunology, 10: 1846.
[52] Guo X K, Zhang Q, Gao L, et al.2013. Increasing expression of microRNA 181 inhibits Porcine reproductive and respiratory syndrome virus replication and has implications for controlling virus infection[J]. Journal of Virology, 87(2): 1159-1171.
[53] Hao Z, Fu F, Cao L, et al.2019. Tumor suppressor p53 inhibits Porcine epidemic diarrhea virus infection via interferon-mediated antiviral immunity[J]. Molecular Immunology, 108: 68-74.
[54] Holtkamp D J, Kliebenstein J B, Zimmerman J J, et al.2012. Economic impact of Porcine reproductive and respiratory syndrome virus on US pork producers[J]. Iowa State University Animal Industry Report, doi: https://doi.org/10.31274/ans_air-180814-28.
[55] Huang J, Ma G, Fu L, et al.2014. Pseudorabies viral replication is inhibited by a novel target of MIR-21[J]. Virology, 456-457: 319-328.
[56] Ji L, Zhou X, Liang W, et al.2017. Porcine interferon stimulated gene 12a restricts Porcine reproductive and respiratory syndrome virus replication in MARC-145 cells[J]. International Journal of Molecular Sciences, 18(8): 1613.
[57] Jiang D, Jiang C, Sui C, et al.2022. Swine nono is an essential factor to inhibit Pseudorabies virus infection[J]. Veterinary Microbiology, 275: 109582.
[58] Jin H, Zhou L, Ge X, et al.2017. Cellular dead-box RNA helicase 18 (DDX18) promotes the PRRSV replication via interaction with virus NSP2 and NSP10[J]. Virus Research, 238: 204-212.
[59] Jing H, Ke W, Tao R, et al.2019a. Trim59 inhibits Porcine reproductive and respiratory syndrome virus (PRRSV)-2 replication in vitro[J]. Research in Veterinary Science, 127: 105-112.
[60] Jing H, Song T, Cao S, et al.2019b. Nucleotide-binding oligomerization domain-like receptor X1 restricts Porcine reproductive and respiratory syndrome virus-2 replication by interacting with viral NSP9[J]. Virus Research, 268: 18-26.
[61] Jing H, Song Y, Li H, et al.2023. HnRNP K reduces viral gene expression by targeting cytosine-rich sequences in Porcine reproductive and respiratory syndrome virus-2 genome to dampen the viral growth[J]. Virology, 581: 15-25.
[62] Jing H, Tao R, Dong N, et al.2019c. Nuclear localization signal in TRIM22 is essential for inhibition of type 2 Porcine reproductive and respiratory syndrome virus replication in MARC-145 cells[J]. Virus Genes, 55(5): 660-672.
[63] Ke W, Fang L, Jing H, et al.2017. Cholesterol 25-hydroxylase inhibits Porcine reproductive and respiratory syndrome virus replication through enzyme activity-dependent and-independent mechanisms[J]. Journal of Virology, 91(19).
[64] Kim J K, Fahad A M, Shanmukhappa K, et al.2006. Defining the cellular target(s) of Porcine reproductive and respiratory syndrome virus blocking monoclonal antibody 7G10[J]. Journal of Virology, 80(2): 689-696.
[65] Kim Y, Lee C.2015. Extracellular signal-regulated kinase (ERK) activation is required for Porcine epidemic diarrhea virus replication[J]. Virology, 484: 181-193.
[66] Kong N, Shan T, Wang H, et al.2020. BST2 suppresses Porcine epidemic diarrhea virus replication by targeting and degrading virus nucleocapsid protein with selective autophagy[J]. Autophagy, 16(10): 1737-1752.
[67] Li B, Ge J, Li Y.2007a. Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus[J]. Virology, 365(1): 166-172.
[68] Li B X, Ge J W, Li Y J.2007b. Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus[J]. Virology, 365(1): 166-172.
[69] Li C, Su M, Yin B, et al.2019a. Integrin αvβ3 enhances replication of Porcine epidemic diarrhea virus on Vero E6 and porcine intestinal epithelial cells[J]. Veterinary Microbiology, 237: 108400.
[70] Li C, Wang Y, Zheng H, et al.2020a. Antiviral activity of ISG15 against Classical swine fever virus replication in porcine alveolar macrophages via inhibition of autophagy by isgylating BECN1[J]. Veterinary Research, 51(1): 22.
[71] Li C, Zheng H, Wang Y, et al.2019b. Antiviral role of IFITM proteins in Classical swine fever virus infection[J]. Viruses, 11(2).
[72] Li C, Zhou Y, Chen X, et al.2022a. Porcine TRIM35 positively regulate TRAF3-mediated IFN-β production and inhibit Japanese encephalitis virus replication[J]. Developmental and Comparative Immunology, 127: 104290.
[73] Li D, Li S, Sun Y, et al.2013. Poly(c)-binding protein 1, a novel n(pro)-interacting protein involved in Classical swine fever virus growth[J]. Journal of Virology, 87(4): 2072-2080.
[74] Li H, Zhang C, Cui H, et al.2016a. Fkbp8 interact with Classical swine fever virus NS5A protein and promote virus RNA replication[J]. Virus Genes, 52(1): 99-106.
[75] Li J, Wang D, Fang P, et al.2022b. Dead-box RNA helicase 21 (DDX21) positively regulates the replication of Porcine reproductive and respiratory syndrome virus via multiple mechanisms[J]. Viruses, 14(3).
[76] Li L, Bai Y, Zhou Y, et al.2023a. PSMB1 inhibits the replication of Porcine reproductive and respiratory syndrome virus by recruiting nbr1 to degrade nonstructural protein 12 by autophagy[J]. Journal of Virology, 97(1): e0166022.
[77] Li L, Fu F, Xue M, et al.2017a. Ifn-lambda preferably inhibits PEDV infection of porcine intestinal epithelial cells compared with IFN-alpha[J]. Antiviral Research, 140: 76-82.
[78] Li L, Gao F, Jiang Y, et al.2015a. Cellular MIR-130b inhibits replication of Porcine reproductive and respiratory syndrome virus in vitro and in vivo[J]. Scientific Reports, 5: 17010.
[79] Li L, Wei Z, Zhou Y, et al.2014. Host MIR-26a suppresses replication of Porcine reproductive and respiratory syndrome virus by upregulating typeⅠinterferons[J]. Virus Research, 195: 86-94.
[80] Li L, Zhou Y, Jiang Y, et al.2018a. Galectin-3 inhibits replication of Porcine reproductive and respiratory syndrome virus by interacting with viral NSP12 in vitro[J]. Virus Research, 253: 87-91.
[81] Li N, Du T, Yan Y, et al.2016b. MicroRNA let-7f-5p inhibits Porcine reproductive and respiratory syndrome virus by targeting myh9[J]. Scientific Reports, 6: 34332.
[82] Li N, Huang K, Chen Y, et al.2021. MicroRNA ssc-MIR-124a exhibits antiviral activity against Porcine reproductive and respiratory syndrome virus via suppression of host genes CD163[J]. Veterinary Microbiology, 261: 109216.
[83] Li R, Chen C, He J, et al.2019c. E3 ligase asb8 promotes Porcine reproductive and respiratory syndrome virus proliferation by stabilizing the viral NSP1α protein and degrading host IKKβ kinase[J]. Virology, 532: 55-68.
[84] Li S, Feng S, Wang J H, et al.2015b. Eef1a interacts with the NS5A protein and inhibits the growth of Classical swine fever virus[J]. Viruses, 7(8): 4563-4581.
[85] Li S, Wang J, He W R, et al.2015c. Thioredoxin 2 is a novel e2-interacting protein that inhibits the replication of Classical swine fever virus[J]. Journal of Virology, 89(16): 8510-8524.
[86] Li S, Zhang X, Yao Y, et al.2022c. Inducible MIR-150 inhibits Porcine reproductive and respiratory syndrome virus replication by targeting viral genome and suppressor of cytokine signaling 1[J]. Viruses, 14(7).
[87] Li W, Luo R, He Q, et al.2017b. Aminopeptidase N is not required for Porcine epidemic diarrhea virus cell entry[J]. Virus Research, 235: 6-13.
[88] Li W, Mao L, Cao Y, et al.2017c. Porcine viperin protein inhibits the replication of Classical swine fever virus (CSFV) in vitro[J]. Virology Journal, 14(1): 202.
[89] Li W, Zhang Z, Zhang L, et al.2020b. Antiviral role of serine incorporator 5 (serinc5) proteins in Classical swine fever virus infection[J]. Frontiers in Microbiology, 11: 580233.
[90] Li X, Sun R, Guo Y, et al.2023b. N-acetyltransferase 9 inhibits Porcine reproductive and respiratory syndrome virus proliferation by n-terminal acetylation of the structural protein gp5[J]. Microbiol Spectr, 11(1): e0244222.
[91] Li X R, Xie J, Li D, et al.2022d. Hsp27 attenuates cgas-mediated IFN-β signaling through ubiquitination of cGAS and promotes PRV infection[J]. Viruses, 14(9): 1851.
[92] Li X, Yan Z, Ma J, et al.2024. Trim28 promotes Porcine epidemic diarrhea virus replication by mitophagy-mediated inhibition of the JAK-STAT1 pathway[J]. International Journal of Biological Macromolecules, 254(Pt 1): 127722.
[93] Li X M, Wang S P, Wang J Y, et al.2023c. Rhoa suppresses Pseudorabies virus replication in vitro[J]. Virology Journal, 20(1): 264.
[94] Li X Q, Zeng L, Liang D G, et al.2023d. Tmem41b is an interferon-stimulated gene that promotes Pseudorabies virus replication[J]. Journal of Virology, 97(6): e0041223.
[95] Li Z, Chen R, Zhao J, et al.2015d. Lsm14a inhibits Porcine reproductive and respiratory syndrome virus (PRRSV) replication by activating IFN-β signaling pathway in MARC-145[J]. Molecular and Cellular Biochemistry, 399(1-2): 247-256.
[96] Li Z H, Zeng W, Ye S, et al.2018b. Cellular hnRNP A1 interacts with nucleocapsid protein of Porcine epidemic diarrhea virus and impairs viral replication[J]. Viruses, doi:10.3390/v10030127.
[97] Lin J, Wang C, Liang W, et al.2018. Rab1a is required for assembly of Classical swine fever virus particle[J]. Virology, 514: 18-29.
[98] Lin J, Wang C, Zhang L, et al.2017. Rab5 enhances Classical swine fever virus proliferation and interacts with viral NS4B protein to facilitate formation of NS4B related complex[J]. Frontiers in Microbiology, 8: 1468.
[99] Ling S, Luo M, Jiang S, et al.2018. Cellular hsp27 interacts with Classical swine fever virus NS5A protein and negatively regulates viral replication by the NF-κB signaling pathway[J]. Virology, 518: 202-209.
[100] Liu C, Zhao W, Su J, et al.2022a. Hsp90aa1 interacts with CSFV NS5A protein and regulates CSFV replication via the jak/stat and NF-κB signaling pathway[J]. Frontiers in Immunology, 13: 1031868.
[101] Liu F, Wang H, Du L, et al.2018a. MicroRNA-30c targets the interferon-alpha/beta receptor beta chain to promote type 2 PRRSV infection[J]. Journal of General Virology, 99(12): 1671-1680.
[102] Liu H, Li S, Yang X, et al.2018b. Porcine ISG15 modulates the antiviral response during Pseudorabies virus replication[J]. Gene, 679: 212-218.
[103] Liu K, Liao X, Zhou B, et al.2013. Porcine alpha interferon inhibit Japanese encephalitis virus replication by different ISGS in vitro[J]. Research in Veterinary Science, 95(3): 950-956.
[104] Liu X, Bi J, Zhao Q, et al.2019. Overexpression of RACK1 enhanced the replication of Porcine reproductive and respiratory syndrome virus in MARC-145 cells and promoted the NF-κb activation via upregulating the expression and phosphorylation of TRAF2[J]. Gene, 709: 75-83.
[105] Liu X, Wang X, Wang Q, et al.2018c. The eukaryotic translation initiation factor 3 subunit e binds to Classical swine fever virus NS5A and facilitates viral replication[J]. Virology, 515: 11-20.
[106] Liu X, Yan Q, Liu X, et al.2024. PKM2 induces mitophagy through the ampk-mtor pathway promoting CSFV proliferation[J]. Journal of Virology, 98(3): e0175123.
[107] Liu X N, Li L W, Gao F, et al.2022b. Cgas restricts PRRSV replication by sensing the mtDNA to increase the cgamp activity[J]. Frontiers in Immunology, 13: 887054.
[108] Liu Y, Zhang L, Chen X, et al.2023. Functional characterization of porcine nucleophosmin (NPM1) gene in promoting the replication of Japanese encephalitis virus and induction of inflammatory cytokines[J]. Developmental and Comparative Immunology, 148: 104902.
[109] Liu Y Y, Liang X D, Liu C C, et al.2021. Fatty acid synthase is involved in Classical swine fever virus replication by interaction with NS4B[J]. Journal of Virology, 95(17): e0078121.
[110] Lou J X, Liu Y Y, Bai J S, et al.2023. Kinesin-1 regulates endocytic trafficking of Classical swine fever virus along acetylated microtubules[J]. Journal of Virology, 97(1): e0192922.
[111] Luo Q, Zhang L, Wei F, et al.2018. Mtorc1 negatively regulates the replication of Classical swine fever virus through autophagy and ires-dependent translation[J]. iScience, 3: 87-101.
[112] Luo X, Xie S, Xu X, et al.2024. Porcine reproductive and respiratory syndrome virus infection induces microRNA novel-216 production to facilitate viral-replication by targeting MAVS 3'UTR[J]. Veterinary Microbiology, 292: 110061.
[113] Lv H, Dong W, Cao Z, et al.2017a. Traf6 is a novel ns3-interacting protein that inhibits Classical swine fever virus replication[J]. Scientific Reports, 7(1): 6737.
[114] Lv H, Dong W, Qian G, et al.2017b. Us10, a novel npro-interacting protein, inhibits Classical swine fever virus replication[J]. Journal of General Virology, 98(7): 1679-1692.
[115] Ma H, Jiang L, Qiao S, et al.2017. The crystal structure of the fifth scavenger receptor cysteine-rich domain of porcine CD163 reveals an important residue involved in Porcine reproductive and respiratory syndrome virus infection[J]. Journal of Virology, 91(3): 10.1128/jvi. 01897-01816.
[116] Ma Y X, Chai Y J, Han Y Q, et al.2024. Pseudorabies virus upregulates low-density lipoprotein receptors to facilitate viral entry[J]. Journal of Virology, 98(1): e0166423.
[117] Maginnis M S2018. Virus-receptor interactions: The key to cellular invasion[J]. Journal of Molecular Biology, 430(17): 2590-2611.
[118] Meulenberg J.2000. PRRSV, the virus[J]. Veterinary Research, 31(1): 11-21.
[119] Muñoz-Moreno R, Cuesta-Geijo M, Martínez-Romero C, et al.2016. Antiviral role of IFITM proteins in African swine fever virus infection[J]. PloS One, 11(4): e0154366.
[120] Netherton C L, Simpson J, Haller O, et al.2009. Inhibition of a large double-stranded DNA virus by mxa protein[J]. Journal of Virology, 83(5): 2310-2320.
[121] Niu L, Zheng Z, Xue Q, et al.2020. Two coupled mutations abolished the binding of CEBPB to the promoter of CXCL14 that displayed an antiviral effect on PRRSV by activating IFN signaling[J]. FASEB Journal, 34(8): 11257-11271.
[122] Pan Y, Guo L, Miao Q, et al.2023. Association of thbs3 with glycoprotein d promotes Pseudorabies virus attachment, fusion, and entry[J]. Journal of Virology, 97(2): e0187122.
[123] Pandey K, Zhong S, Diel D G, et al.2019. Gtpase-activating protein-binding protein 1 (G3BP1) plays an antiviral role against Porcine epidemic diarrhea virus[J]. Veterinary Microbiology, 236: 108392.
[124] Prather R S, Rowland R R, Ewen C, et al.2013. An intact sialoadhesin (sn/siglec1/cd169) is not required for attachment/internalization of the Porcine reproductive and respiratory syndrome virus[J]. Journal of Virology, 87(17): 9538-9546.
[125] Qi X, Cao Y, Wu S, et al.2021. Mir-129a-3p inhibits PEDV replication by targeting the EDA-mediated NF-κB pathway in ipec-j2 cells[J]. International Journal of Molecular Sciences, 22(15).
[126] Qian G, Lv H, Lin J, et al.2018. Fhc, an NS4B-interacting protein, enhances Classical swine fever virus propagation and acts positively in viral anti-apoptosis[J]. Scientific Reports, 8(1): 8318.
[127] Qin L, Fan W, Zheng F, et al.2023a. Swine IFI6 confers antiviral effects against Japanese encephalitis virus in vitro and in vivo[J]. Journal of General Virology, 104(4).
[128] Qin W, Kong N, Wang C, et al.2022a. HnRNP K degrades viral nucleocapsid protein and induces typeⅠIFN production to inhibit Porcine epidemic diarrhea virus replication[J]. Journal of Virology, 96(22): e0155522.
[129] Qin W, Kong N, Zhang Y, et al.2022b. Nuclear ribonucleoprotein raly targets virus nucleocapsid protein and induces autophagy to restrict Porcine epidemic diarrhea virus replication[J]. Journal of Biological Chemistry, 298(8): 102190.
[130] Qin W, Kong N, Zhang Y, et al.2023b. Ptbp1 suppresses Porcine epidemic diarrhea virus replication via inducing protein degradation and IFN production[J]. Journal of Biological Chemistry, 299(8): 104987.
[131] Qin W, Qi X, Xie Y, et al.2023c. LncRNA446 regulates tight junctions by inhibiting the ubiquitinated degradation of alix after Porcine epidemic diarrhea virus infection[J]. Journal of Virology, 97(3): e0188422.
[132] Sánchez‐Vizcaíno J M, Laddomada A,Arias M L2019. African swine fever virus[J]. Diseases of swine: 443-452.
[133] Shanmukhappa K, Kim J K,Kapil S2007. Role of CD151, a tetraspanin, in Porcine reproductive and respiratory syndrome virus infection[J]. Virology Journal, 4: 62.
[134] Shi C, Liu Y, Ding Y, et al.2015. PRRSV receptors and their roles in virus infection[J]. Archives of Microbiology, 197: 503-512.
[135] Shi D, Lv M, Chen J, et al.2014. Molecular characterizations of subcellular localization signals in the nucleocapsid protein of Porcine epidemic diarrhea virus[J]. Viruses, 6(3): 1253-1273.
[136] Shi X, Yang Y, Zhang X, et al.2022. Mir-541-3p promoted Porcine reproductive and respiratory syndrome virus 2 (PRRSV-2) replication by targeting interferon regulatory factor 7[J]. Viruses, 14(1).
[137] Shi Z, Sun J, Guo H, et al.2013. Down-regulation of cellular protein heme oxygenase 1 inhibits proliferation of Classical swine fever virus in pk-15 cells[J]. Virus Research, 173(2): 315-320.
[138] Shirato K, Maejima M, Islam M T, et al.2016. Porcine aminopeptidase N is not a cellular receptor of Porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity[J]. Journal of General Virology, 97(10): 2528-2539.
[139] Song C, Liu H, Cao Z, et al.2023. Hsp27 interacts with nonstructural proteins of Porcine reproductive and respiratory syndrome virus and promotes viral replication[J]. Pathogens, 12(1).
[140] Song H, Quan J, Li C, et al.2022. Signaling lymphocytic activation molecule family member 1 inhibits Porcine reproductive and respiratory syndrome virus replication[J]. Animals (Basel), 12(24).
[141] Song Y, Guo Y, Li X, et al.2021. Rbm39 alters phosphorylation of c-jun and binds to viral RNA to promote PRRSV proliferation[J]. Frontiers in Immunology, 12: 664417.
[142] Song Z, Bai J, Liu X, et al.2019. S100a9 regulates Porcine reproductive and respiratory syndrome virus replication by interacting with the viral nucleocapsid protein[J]. Veterinary Microbiology, 239: 108498.
[143] Su C-M, Rowland R R R, Yoo D2021. Recent advances in PRRS virus receptors and the targeting of receptor-ligand for control[J]. Vaccines, 9(4): 354.
[144] Su C M, Hung Y F, Tang J, et al.2024. Suppression of TRIM19 by arterivirus nonstructural protein 1 promotes viral replication[J]. Virus Research, 340: 199302.
[145] Sun H, Wu M, Zhang Z, et al.2023. Oas1 suppresses African swine fever virus replication by recruiting TRIM21 to degrade viral major capsid protein[J]. Journal of Virology, 97(10): e0121723.
[146] Tan L, Yao J, Yang Y, et al.2021. Current status and challenge of Pseudorabies virus infection in china[J]. Virologica Sinica, 36: 588-607.
[147] Tian K, Yu X, Zhao T, et al.2007. Emergence of fatal PRRSV variants: Unparalleled outbreaks of atypical prrs in china and molecular dissection of the unique hallmark[J]. PLOS ONE, 2(6): e526.
[148] Tian W J, Zhang X Z, Wang J, et al.2024. Calmodulin-like 5 promotes PEDV replication by regulating late-endosome synthesis and innate immune response[J]. Virologica Sinica, 39(3): 501-512.
[149] Tian Z, Zhang H, Yu R, et al.2023. The GTPase activity and isoprenylation of swine GBP1 are critical for inhibiting the production of Japanese encephalitis virus[J]. Veterinary Microbiology, 284: 109843.
[150] Van Gorp H, Van Breedam W, Van Doorsselaere J, et al.2010. Identification of the CD163 protein domains involved in infection of the Porcine reproductive and respiratory syndrome virus[J]. Journal of Virology, 84(6): 3101-3105.
[151] Vanderheijden N, Delputte P L, Favoreel H W, et al.2003. Involvement of sialoadhesin in entry of Porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages[J]. Journal of Virology, 77(15): 8207-8215.
[152] Wang D, Cao L, Xu Z, et al.2013. Mir-125b reduces Porcine reproductive and respiratory syndrome virus replication by negatively regulating the NF-κB pathway[J]. PLOS ONE, 8(2): e55838.
[153] Wang D, Fang L,Xiao S2016. Porcine epidemic diarrhea in china[J]. Virus Research, 226: 7-13.
[154] Wang H, Chen X, Kong N, et al.2021a. Trim21 inhibits Porcine epidemic diarrhea virus proliferation by proteasomal degradation of the nucleocapsid protein[J]. Archives of Virology, 166(7): 1903-1911.
[155] Wang H, Kong N, Jiao Y, et al.2021b. Egr1 suppresses Porcine epidemic diarrhea virus replication by regulating IRAV to degrade viral nucleocapsid protein[J]. Journal of Virology, 95(19): e0064521.
[156] Wang J, Wang C F, Ming S L, et al.2020a. Porcine IFITM1 is a host restriction factor that inhibits Pseudorabies virus infection[J]. International Journal of Biological Macromolecules, 151: 1181-1193.
[157] Wang J, Zeng L, Zhang L, et al.2017. Cholesterol 25-hydroxylase acts as a host restriction factor on Pseudorabies virus replication[J]. Journal of General Virology, 98(6): 1467-1476.
[158] Wang Q, Yang S, Yang K, et al.2023a. CD4 is an important host factor for Japanese encephalitis virus entry and replication in pk-15 cells[J]. Veterinary Microbiology, 287: 109913.
[159] Wang Q, Yi H, Guo Y, et al.2023b. Pcna promotes PRRSV replication by increasing the synthesis of viral genome[J]. Veterinary Microbiology, 281: 109741.
[160] Wang X, Bi J, Yang C, et al.2023c. Long non-coding RNA loc103222771 promotes infection of Porcine reproductive and respiratory syndrome virus in MARC-145 cells by downregulating claudin-4[J]. Veterinary Microbiology, 286: 109890.
[161] Wang X, Gao L, Yang X, et al.2020b. Porcine rack1 negatively regulates the infection of Classical swine fever virus and the NF-κb activation in pk-15 cells[J]. Veterinary Microbiology, 246: 108711.
[162] Wang X, Tong W, Yang X, et al.2024. Rbm14 inhibits the replication of Porcine epidemic diarrhea virus by recruiting p62 to degrade nucleocapsid protein through the activation of autophagy and interferon pathway[J]. Journal of Virology, 98(3): e0018224.
[163] Wei R, Zhang X, Wang X, et al.2024. Pdcd4 restricts PRRSV replication in an EIF4A-dependent manner and is antagonized by the viral nonstructural protein 9[J]. Journal of Virology, 98(5): e0006024.
[164] Wei Y, Zeng S, Zou C, et al.2021. Porcine TRIM21 ring-finger E3 ubiquitin ligase is essential for anti-PRRSV activity[J]. Veterinary Microbiology, 256: 109043.
[165] Welch S K W, Calvert J G.2010. A brief review of CD163 and its role in PRRSV infection[J]. Virus Research, 154(1-2): 98-103.
[166] Wensvoort G, Terpstra C, Pol J, et al.1991. Mystery swine disease in the netherlands: The isolation of Lelystad virus[J]. Veterinary Quarterly, 13(3): 121-130.
[167] Whitworth K M, Rowland R R, Ewen C L, et al.2016. Gene-edited pigs are protected from Porcine reproductive and respiratory syndrome virus[J]. Nature Biotechnology, 34(1): 20-22.
[168] WOAH.2024. Recognition of the classical swine fever status of members[Z]. Resolution No. 26.
[169] Wu J, Chi H, Fu Y, et al.2020. The antiviral protein viperin interacts with the viral N protein to inhibit proliferation of Porcine epidemic diarrhea virus[J]. Archives of Virology, 165(10): 2279-2289.
[170] Wu J, Peng X, Zhou A, et al.2014. Mir-506 inhibits PRRSV replication in MARC-145 cells via cd151[J]. Molecular and Cellular Biochemistry, 394(1-2): 275-281.
[171] Wu T, Wei X, Zheng S, et al.2022. Poly(a)-binding protein cytoplasmic 1 inhibits Porcine epidemic diarrhea virus replication by interacting with nucleocapsid protein[J]. Viruses, 14(6).
[172] Wu X, Fang J, Huang Q, et al.2021. Major vault protein inhibits Porcine reproductive and respiratory syndrome virus infection in crl2843 (CD163) cell lines and primary porcine alveolar macrophages[J]. Viruses, 13(11).
[173] Xiao S, Du T, Wang X, et al.2016. Mir-22 promotes Porcine reproductive and respiratory syndrome virus replication by targeting the host factor HO-1[J]. Veterinary Microbiology, 192: 226-230.
[174] Xiao S, Wang X, Ni H, et al.2015. MicroRNA MIR-24-3p promotes Porcine reproductive and respiratory syndrome virus replication through suppression of heme oxygenase-1 expression[J]. Journal of Virology, 89(8): 4494-4503.
[175] Xiao S, Zhang A, Zhang C, et al.2014. Heme oxygenase-1 acts as an antiviral factor for Porcine reproductive and respiratory syndrome virus infection and over-expression inhibits virus replication in vitro[J]. Antiviral Research, 110: 60-69.
[176] Xie J, Bi Y, Xu S, et al.2020. Host antiviral protein IFITM2 restricts Pseudorabies virus replication[J]. Virus Research, 287: 198105.
[177] Xie J, Li X, Yang S, et al.2022. Ddx56 inhibits prv replication through regulation of IFN-β signaling pathway by targeting cgas[J]. Frontiers in Microbiology, 13: 932842.
[178] Xu J, Zhang L, Xu Y, et al.2019. Pp2a facilitates Porcine reproductive and respiratory syndrome virus replication by deactivating irf3 and limiting typeⅠinterferon production[J]. Viruses, 11(10).
[179] Xu K, Zhou Y, Mu Y, et al.2020b. Cd163 and papn double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to pdcov while maintaining normal production performance[J]. Elife, 9: e57132.
[180] Xu K, Zhou Y, Mu Y, et al.2020c. Cd163 and papn double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to pdcov while maintaining normal production performance[J]. Elife, 9.
[181] Xu P, Jia S, Wang K, et al.2020d. Mir-140 inhibits Classical swine fever virus replication by targeting rab25 in swine umbilical vein endothelial cells[J]. Virulence, 11(1): 260-269.
[182] Xu W, Yan P, Zhou Z, et al.2023a. Hdac6 triggers the atm-dependent DNA damage response to promote prv replication[J]. Microbiology Spectrum, 11(2): e0213222.
[183] Xu W, Yang K, Zheng Y, et al.2023b. Bak-mediated pyroptosis promotes Japanese encephalitis virus proliferation in porcine kidney 15 cells[J]. Viruses, 15(4).
[184] Xu X, Liu Y, Gao J, et al.2023c. GRAMD4 regulates PEDV-induced cell apoptosis inhibiting virus replication via the endoplasmic reticulum stress pathway[J]. Veterinary Microbiology, 279: 109666.
[185] Xu X, Wang L, Liu Y, et al.2022. Trim56 overexpression restricts Porcine epidemic diarrhoea virus replication in MARC-145 cells by enhancing tlr3-TRAF3-mediated IFN-β antiviral response[J]. Journal of General Virology, 103(5).
[186] Yan Z, Wang M, Li X, et al.2023. Impact of African swine fever epidemic on the cost intensity of pork production in china[J]. Agriculture, 13(2): 497.
[187] Yang C, Lan R, Wang X, et al.2020a. Integrin β3, a rack1 interacting protein, is critical for Porcine reproductive and respiratory syndrome virus infection and NF-κB activation in MARC-145 cells[J]. Virus Research, 282: 197956.
[188] Yang H, Zhang J, Zhang X, et al.2018. CD163 knockout pigs are fully resistant to highly pathogenic Porcine reproductive and respiratory syndrome virus[J]. Antiviral Research, 151: 63-70.
[189] Yang J, Petitjean S J, Koehler M, et al.2020b. Molecular interaction and inhibition of SARS-COV-2 binding to the ACE2 receptor[J]. Nature communications, 11(1): 4541.
[190] Yang L, Wang Z, Ouyang H, et al.2022. Porcine ZC3H11A is essential for the proliferation of Pseudorabies virus and Porcine circovirus 2[J]. ACS Infect Dis, 8(6): 1179-1190.
[191] Yang S, He M, Liu X, et al.2013. Japanese encephalitis virus infects porcine kidney epithelial PK15 cells via clathrin-and cholesterol-dependent endocytosis[J]. Virology Journal, 10(1): 258.
[192] Yang S, Pei Y, Li X, et al.2016. Mir-124 attenuates Japanese encephalitis virus replication by targeting dnm2[J]. Virology Journal, 13: 105.
[193] Yang S, Shan T, Zhou Y, et al.2014. Molecular cloning and characterizations of porcine samhd1 and its roles in replication of highly pathogenic Porcine reproductive and respiratory syndrome virus[J]. Developmental and Comparative Immunology, 47(2): 234-246.
[194] Yang Z, Shi Z, Guo H, et al.2015. Annexin 2 is a host protein binding to Classical swine fever virus e2 glycoprotein and promoting viral growth in PK-15 cells[J]. Virus Research, 201: 16-23.
[195] Yao Y, Li S, Zhu Y, et al.2023. Mir-204 suppresses Porcine reproductive and respiratory syndrome virus (PRRSV) replication via inhibiting lc3b-mediated autophagy[J]. Virologica Sinica, 38(5): 690-698.
[196] Yao Y, Zhang X, Li S, et al.2022. Mir-142-3p suppresses Porcine reproductive and respiratory syndrome virus (PRRSV) infection by directly targeting rac1[J]. Veterinary Microbiology, 269: 109434.
[197] Ye C, Cao X, Sheng J, et al.2024. Mir-339-5p inhibits replication of Porcine reproductive and respiratory syndrome virus by targeting viral gene regions[J]. Virus Genes, 60(2): 186-193.
[198] Yi H, Ye R, Xie E, et al.2024. Znf283, a krüppel-associated box zinc finger protein, inhibits RNA synthesis of Porcine reproductive and respiratory syndrome virus by interacting with NSP9 and NSP10[J]. Veterinary Research, 55(1): 9.
[199] You X, Liu M, Liu Q, et al.2022. MiRNA let-7 family regulated by neat1 and arid3a/NF-κB inhibits PRRSV-2 replication in vitro and in vivo[J]. PLoS Pathogens, 18(10): e1010820.
[200] You X, Qu Y, Zhang Y, et al.2020. Mir-331-3p inhibits PRRSV-2 replication and lung injury by targeting PRRSV-2 ORF1b and porcine tnf-α[J]. Frontiers in Immunology, 11: 547144.
[201] Yu C, Xu A, Lang Y, et al.2020. Swine promyelocytic leukemia isoform II inhibits Pseudorabies virus infection by suppressing viral gene transcription in promyelocytic leukemia nuclear bodies[J]. Journal of Virology, 94(18).
[202] Yuan Q, Fan J, Wang H, et al.2022. LncRNA-susaj1 activates the er stress pathway inhibiting jev proliferation by promoting PK15 cells apoptosis[J]. Front Biosci (Landmark Ed), 27(9): 260.
[203] Zhai X, Kong N, Wang C, et al.2023. Prpf19 limits Porcine epidemic diarrhea virus replication through targeting and degrading viral capsid protein[J]. Journal of Virology, 97(1): e0161422.
[204] Zhai Y, Du Y, Yuan H, et al.2024. Ubiquitin-specific proteinase 1 stabilizes PRRSV nonstructural protein NSP1β to promote viral replication by regulating k48 ubiquitination[J]. Journal of Virology, 98(3): e0168623.
[205] Zhang A, Wan B, Jiang D, et al.2020a. The cytoprotective enzyme heme oxygenase-1 suppresses Pseudorabies virus replication in vitro[J]. Frontiers in Microbiology, 11: 412.
[206] Zhang C, Kang K, Ning P, et al.2015. Heat shock protein 70 is associated with CSFV NS5A protein and enhances viral RNA replication[J]. Virology, 482: 9-18.
[207] Zhang J, Guo L, Yang L, et al.2018a. Metalloprotease ADAM17 regulates Porcine epidemic diarrhea virus infection by modifying aminopeptidase n[J]. Virology, 517: 24-29.
[208] Zhang L, Jin M, Song M, et al.2021a. Arfgap1 binds to Classical swine fever virus NS5A protein and enhances CSFV replication in pk-15 cells[J]. Veterinary Microbiology, 255: 109034.
[209] Zhang L, Lin J, Weng M, et al.2022a. Rplp1, an NS4B-interacting protein, enhances production of CSFV through promoting translation of viral genome[J]. Virulence, 13(1): 370-386.
[210] Zhang L, Wang T, Song M, et al.2020b. RAB1B-GBF1-ARFS mediated intracellular trafficking is required for Classical swine fever virus replication in swine umbilical vein endothelial cells[J]. Veterinary Microbiology, 246: 108743.
[211] Zhang L, Yi Y, Wang T, et al.2023a. 25-hydroxycholesterol inhibits Classical swine fever virus entry into porcine alveolar macrophages by depleting plasma membrane cholesterol[J]. Veterinary Microbiology, 278: 109668.
[212] Zhang L, Zhang L, Pan Y, et al.2021b. Downregulation of MIR-218 by Porcine reproductive and respiratory syndrome virus facilitates viral replication via inhibition of typeⅠinterferon responses[J]. Journal of Biological Chemistry, 296: 100683.
[213] Zhang L, Zhao D, Jin M, et al.2020c. Rab18 binds to Classical swine fever virus NS5A and mediates viral replication and assembly in swine umbilical vein endothelial cells[J]. Virulence, 11(1): 489-501.
[214] Zhang P, Yu L, Dong J, et al.2020d. Cellular poly(c) binding protein 2 interacts with Porcine epidemic diarrhea virus papain-like protease 1 and supports viral replication[J]. Veterinary Microbiology, 247: 108793.
[215] Zhang Q, Guo X K, Gao L, et al.2014. MicroRNA-23 inhibits PRRSV replication by directly targeting PRRSV RNA and possibly by upregulating typeⅠinterferons[J]. Virology, 450-451: 182-195.
[216] Zhang W J, Wang R Q, Li L T, et al.2021c. Hsp90 is involved in Pseudorabies virus virion assembly via stabilizing major capsid protein vp5[J]. Virology, 553: 70-80.
[217] Zhang X, Dong W, Wang X, et al.2022b. Exostosin glycosyltransferase 1 reduces Porcine reproductive and respiratory syndrome virus infection through proteasomal degradation of NSP3 and NSP5[J]. Journal of Biological Chemistry, 298(2): 101548.
[218] Zhang X, Du Q, Chen G, et al.2023b. Guanylate-binding protein 1 inhibits nuclear delivery of Pseudorabies virus by disrupting structure of actin filaments[J]. Veterinary Research, 54(1): 21.
[219] Zhang X, Feng Y, Yan Y, et al.2019a. Cellular microRNA MIR-c89 inhibits replication of Porcine reproductive and respiratory syndrome virus by targeting the host factor porcine retinoid X receptor β[J]. Journal of General Virology, 100(10): 1407-1416.
[220] Zhang X Z, Tian W J, Wang J, et al.2022c. Death receptor DR5 as a proviral factor for viral entry and replication of coronavirus PEDV[J]. Viruses, 14(12).
[221] Zhang Y, Kong N, Ti J, et al.2023c. BST2 negatively regulates Porcine reproductive and respiratory syndrome virus replication by restricting the expression of viral proteins[J]. Virus Research, 334: 199181.
[222] Zhang Y, Zhang H, Zheng G L, et al.2019b. Porcine ring finger protein 114 inhibits Classical swine fever virus replication via k27-linked polyubiquitination of viral NS4B[J]. Journal of Virology, 93(21).
[223] Zhang Y N, Liu Y Y, Xiao F C, et al.2018b. Rab5, rab7, and rab11 are required for caveola-dependent endocytosis of Classical swine fever virus in porcine alveolar macrophages[J]. Journal of Virology, 92(15).
[224] Zhang Z, Li Z, Li H, et al.2022d. The economic impact of porcine reproductive and respiratory syndrome outbreak in four chinese farms: Based on cost and revenue analysis[J]. Frontiers in Veterinary Science, 9: 1024720.
[225] Zhao C, Liu H, Xiao T, et al.2020a. Crispr screening of porcine sgRNA library identifies host factors associated with Japanese encephalitis virus replication[J]. Nature Communications, 11(1): 5178.
[226] Zhao D, Zhang L, Song M, et al.2022a. Rps3-induced antiviral cytokines inhibit the proliferation of Classical swine fever virus[J]. Acta Virologica, 66(1): 55-64.
[227] Zhao F, Huang Y, Ji J, et al.2024. Ido1 promotes CSFV replication by mediating tryptophan metabolism to inhibit NF-κB signaling[J]. Journal of Virology: e0045824.
[228] Zhao G, Hou J, Xu G, et al.2017. Cellular microRNA MIR-10a-5p inhibits replication of Porcine reproductive and respiratory syndrome virus by targeting the host factor signal recognition particle 14[J]. Journal of General Virology, 98(4): 624-632.
[229] Zhao H, Yang J, Wang Q, et al.2022b. Exosomal miRNA-328-3p targets zo-3 and inhibits Porcine epidemic diarrhea virus proliferation[J]. Archives of Virology, 167(3): 901-910.
[230] Zhao J, Feng N, Li Z, et al.2016. 2',5'-oligoadenylate synthetase 1(oas1) inhibits PRRSV replication in MARC-145 cells[J]. Antiviral Research, 132: 268-273.
[231] Zhao J, Zhu L, Xu L, et al.2020b. Porcine interferon lambda 3 (IFN-λ3) shows potent anti-PRRSV activity in primary porcine alveolar macrophages (PAMs)[J]. BMC Veterinary Research, 16(1): 408.
[232] Zhao K, Li L W, Zhang Y J, et al.2018. Mov10 inhibits replication of Porcine reproductive and respiratory syndrome virus by retaining viral nucleocapsid protein in the cytoplasm of MARC-145 cells[J]. Biochemical and Biophysical Research Communications, 504(1): 157-163.
[233] Zhao M, Sha H, Zhang H, et al.2022c. Trim4-mediated ubiquitination of NSP2 restricts Porcine reproductive and respiratory syndrome virus proliferation[J]. BMC Veterinary Research, 18(1): 208.
[234] Zhao Y, Song Z, Bai J, et al.2019. Zap, a ccch-type zinc finger protein, inhibits Porcine reproductive and respiratory syndrome virus replication and interacts with viral NSP9[J]. Journal of Virology, 93(10).
[235] Zheng G, Li L F, Zhang Y, et al.2020. Mertk is a host factor that promotes Classical swine fever virus entry and antagonizes innate immune response in pk-15 cells[J]. Emerging Microbes & Infections, 9(1): 571-581.
[236] Zheng H, Xu L, Liu Y, et al.2018. MicroRNA-221-5p inhibits Porcine epidemic diarrhea virus replication by targeting genomic viral RNA and activating the NF-κB pathway[J]. International Journal of Molecular Sciences, 19(11).
[237] Zheng H Q, Li C, Zhu X F, et al.2022a. Mir-615 facilitates Porcine epidemic diarrhea virus replication by targeting irak1 to inhibit type III interferon expression[J]. Frontiers in Microbiology, 13: 1071394.
[238] Zheng J, Gao Q, Xu J, et al.2022b. DNAja3 interacts with PEDV s1 protein and inhibits virus replication by affecting virus adsorption to host cells[J]. Viruses, 14(11).
[239] Zheng S, Zhu D, Lian X, et al.2016. Porcine 2', 5'-oligoadenylate synthetases inhibit Japanese encephalitis virus replication in vitro[J]. Journal of Medical Virology, 88(5): 760-768.
[240] Zhou C, Liu Y, Wei Q, et al.2023a. Hspa5 promotes attachment and internalization of Porcine epidemic diarrhea virus through interaction with the spike protein and the endo-/lysosomal pathway[J]. Journal of Virology, 97(6): e0054923.
[241] Zhou H, Yan Y, Gao J, et al.2023b. Heterogeneous nuclear protein U degraded the m(6)a methylated TRAF3 transcript by ythdf2 to promote Porcine epidemic diarrhea virus replication[J]. Journal of Virology, 97(2): e0175122.
[242] Zhou J, Chen J, Zhang X M, et al.2018. Porcine MX1 protein inhibits Classical swine fever virus replication by targeting nonstructural protein ns5b[J]. Journal of Virology, 92(7).
[243] Zhou M, Li C, Lu C, et al.2016. MiRNA29 promotes viral replication during early stage of PRRSV infection in vitro[J]. DNA and Cell Biology, 35(10): 636-642.
[244] Zhu M, Lv J, Wang W, et al.2023a. Cmpk2 is a host restriction factor that inhibits infection of multiple coronaviruses in a cell-intrinsic manner[J]. PLoS Biology, 21(3): e3002039.
[245] Zhu Z, Zhang M, Yuan L, et al.2023b. Lgp2 promotes typeⅠinterferon production to inhibit PRRSV infection via enhancing mda5-mediated signaling[J]. Journal of Virology, 97(1): e0184322.
[246] Zhu Z, Zhang X, Dong W, et al.2020. Trem2 suppresses the proinflammatory response to facilitate PRRSV infection via PI3K/NF-κB signaling[J]. PLoS Pathogens, 16(5): e1008543.