1 College of Life Science, Huzhou University, Huzhou 313002, China; 2 Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; 3 College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; 4 Haining Honghai Culture Co., Ltd., Haining 314400, China; 5 Haining Aquaculture Technology Service Station, Haining 314400, China
Abstract:The worldwide cultivated freshwater economic crayfish Cherax quadricarinatus is also extensively farmed in various regions of our country. To investigate the genetic diversity and structure of different regions and artificially bred populations of C. quadricarinatus in China, This study conducted analysis on 10 regional aquaculture populations and 3 generations of selectively bred populations using a panel of 15 and 20 microsatellite markers. The results revealed that among the 10 aquaculture populations, the average number of alleles (Na) ranged from 5.867 to 6.867, while the average number of effective alleles (Ne) ranged from 3.090 to 3.857. Additionally, all populations exhibited a Shannon index (H') greater than 1, with both mean observed heterozygosity (Ho) and mean expected heterozygosity (He) exceeding 0.5. The average polymorphism information content (PIC) ranged from 0.531 to 0.595. In addition, the number of migrants per generation (Nm) in 10 different regions ranged from 11.343 to 32.526. The genetic differentiation index (Fst) ranged from 0.008 to 0.027, the genetic distance (D) ranged from 0.024 to 0.090, and the genetic similarity coefficient (I) ranged from 0.914 to 0.977. The cluster map constructed based on D showed that Chaoshan and Nantong, Zhuhai, Taiwan and Pinghu groups cluster into a branch, Wuxi and Huaian, Hainan and Zhuji groups cluster into a branch, and Shanwei groups cluster into a branch alone. Analysis of the selectively bred populations over 3 generations revealed a significant decrease in genetic diversity parameters. In which, Ho decreased from 0.663 to 0.638, H' decreased from 1.449 to 1.372, Na decreased from 3.509 to 3.303, and PIC decreased from 0.640 to 0.635, indicating a decrease in these parameters due to artificial selection. Furthermore, with increasing generations, the parameter I gradually declined from 0.961 to 0.931 while D steadily increased from 0.044 to 0.07 between consecutive generations. However, the I between adjacent generations increased from 0.957 to 0.960, and Nm increased from 26.262 to 29.895. Fst decreased gradually, with a value of 0.009 between the first and second generations and a value of 0.008 between the second and third generations. These results further indicated that consecutive artificial selection led to a decrease in genetic similarity and an increase in genetic distance between generations, also resulting in an increasing level of genetic differentiation. All the above research results indicated that there was no significant genetic differentiation among different regional populations of C. quadricarinatus in China, and the genetic diversity levels were high in all regions, making them suitable as foundation populations for breeding. After 3 generations of selective breeding, the genetic diversity level of the selectively bred populations decreased slightly but remained at a relatively high level. The genetic variation and genetic differentiation levels were relatively low, indicating that they still possess strong breeding potential. These findings provide important theoretical support for the selective breeding of C. quadricarinatus.
[1] 陈孝煊, 吴志新, 胡立才. 1995. 水温对澳大利亚红螯螯虾摄食及生长的影响[J]. 华中农业大学学报, 14(05): 477-480. (Chen X X, Wu Z X, Hu L C.1995. Effects of water temperature on ingestionand growth of Cherax quadricarinatus[J]. Journal of Huazhong Agricultural University, 14(05): 477-480.) [2] 程顺, 蒋文枰, 刘士力, 等. 2023. 红螯螯虾虾塘种稻初探[J]. 浙江农业科学, 64(06): 1399-1403. (Cheng S, Jiang W P, Liu L S, et al .2023. Preliminary study on rice cultivation in shrimp ponds of Cherax ouadricarinatus[J]. Zhejiang Agricultural Sciences, 64(06): 1399-1403.) [3] 崔雁娜, 郝贵杰, 林峰, 等. 2020. 两种养殖模式红螯螯虾肌肉营养及质构比较[J]. 食品与发酵工业, 46(21): 115-120. (Cui Y N, Hao G J, Lin F, et al.2020. Comparison of the nutrition and texture of Cherax quadricarinatus muscle in two culture patterns[J]. Food and Fermentation Industries, 46(21): 115-120.) [4] 付佩胜, 郑玉珍, 王世雄, 等. 2002. 红螯螯虾的繁殖与苗种培育技术[J]. 齐鲁渔业, 19(10): 24-25. (Fu P S, Zheng Y Z, Wang S X, et al.2002.Breeding and wall breeding techniques of Cherax quadricarinatus[J]. Shandong Fisheries, 19(10): 24-25.) [5] 顾志敏, 许谷星, 黄鲜明, 等. 2003. 红螯螯虾的室内人工育苗[J]. 水产学报, 27(01): 32-37. (Gu Z M, Xiu G X, Huang X M, et al.2003. Indoor artificial breeding and juvenile nursing of Cherax quadricarinatus[J]. Journal of Fisheries of China, 27(01): 32-37.) [6] 李镕, 白俊杰, 李胜杰, 等. 2010. 大口黑鲈选育群体遗传结构的微卫星分析[J]. 广东海洋大学学报, 30(3): 11-15. (Li R, Bai J J, Li S J, et al.2010. Microsatellite analysis of genetic structure of breeding population of largemouth bass[J]. Journal of Guangdong Ocean University, 30(3): 11-15.) [7] 罗文, 赵云龙, 王群, 等. 2004. 光照对红螯螯虾繁殖性能及其受精卵卵质的影响[J]. 水产学报, 28(06): 675-681. (Luo W, Zhao Y L, Wang Q, et al.2004. Effects of photoperiod on reproduction performance and egg quality of Cherax quadricarinatus[J]. Journal of Fisheries of China, 28(06): 675-681.) [8] 马冬梅, 苏换换, 朱华平, 等. 2018. 华南鲤选育群体不同世代遗传多样性与遗传结构的微卫星分析[J]. 水生生物学报, 42(05): 887-895. (Ma D M, Su H H, Zhu H P, et al.2018. Microsatellite analysis of genetic diversity and genetic structure in different generations of selected breeding populations of Huanan carp[J]. Acta Hydrobiologica Sinica, 42(05): 887-895.) [9] 牟希东, 白俊杰, 汪学杰, 等. 2007. 三个不同养殖群体金鱼遗传多样性的RAPD分析[J]. 海洋渔业, 29(1): 20-24. (Mu X D, Bai J J, Wang X J, et al.2007. RAPD analysis of genetic diversity of goldfish in three different breeding populations[J]. Marine Fisheries, 29(1): 20-24.) [10] 彭刚, 徐宇, 张燕, 等. 2020. 红螯螯虾累代繁养群体的遗传多样性分析[J]. 水产科学, 39(04): 615-619. (Peng G, Xu Y, Zhang Y, et al.2020. Genetic diversity analysis of successive breeding populations of Cherax quadricarinatus[J]. Fisheries Science, 39(04):615-619.) [11] 彭敏, 陈慧芳, 李强勇, 等. 2020. 凡纳滨对虾连续3个世代选育群体的遗传多样性分析[J]. 南方农业学报, 51(06): 1442-1450. (Peng M, Chen H F, Li Q Y, et al.2020. Genetic diversity analysis of three successive breeding populations of Litopenaeus vannamei[J]. Journal of Southern Agriculture, 51(06): 1442-1450.) [12] 王凤娇, 孟宪红, 傅强, 等. 2020. 基于简化基因组测序的中国明对虾3个选育世代遗传多样性分析[J]. 渔业科学进展, 41(04): 68-76. (Wang F J, Meng X H, Fu Q, et al.2020. Genetic diversity analysis of three breeding generations of Mingopenaeus chinensis based on simplified genome sequencing[J]. Progress in Fishery Sciences, 41(04): 68-76.) [13] 颉晓勇, 李思发, 蔡完其, 等. 2007. 吉富品系尼罗罗非鱼选育过程中遗传变异的微卫星分析[J]. 水产学报, 31(03): 385-390. (Xie X Y, Li S F, Cai W Q, et al.2007. Analysis of genetic diversity of GIFT strain Nile tilapia (Oreochromis niloticus) during selection processing by microsatellites[J]. Journal of Fisheries of China, 31(03): 385-390.) [14] 谢雁南. 2011. 红螯螯虾(Cherax quadricarinatus)微卫星标记筛选及群体遗传学分析[D]. 硕士学位论文, 华东师范大学, 导师: 王群, pp. 34-37. (Xie Y N.2011. Isolation of microsatellite markers and analysis of population genetics in Cherax quadricarinatus[D]. Thesis for M.S., East China Normal University, Suppervisor: Wang Q, pp. 34-37.) [15] 张天时, 刘萍, 李健, 等. 2005. 用微卫星DNA技术对中国对虾人工选育群体遗传多样性的研究[J]. 水产学报, 29(01): 6-12. (Zhang T S, Liu P, Li J, et al.2005. Genetic diversity of cultured populations of Fenneropenaeus chinensis shrimp using microsatellites[J]. Journal of Fisheries of China, 29(01): 6-12.) [16] 赵广泰, 刘贤德, 王志勇, 等. 2010. 大黄鱼连续4代选育群体遗传多样性与遗传结构的微卫星分析[J]. 水产学报, 34(4): 500-507. (Zhao G T, Liu X D, Wang Z Y, et al.2010. Genetic structure and genetic diversity analysis of four consecutive breeding generations of large yellow croaker (Pseudosciaena crocea) using microsatellite markers[J]. Journal of Fisheries of China, 34(4): 500-507.) [17] 赵云龙, 孟凡丽, 陈立侨, 等. 2000. 红螯螯虾繁殖习性的研究[J]. 动物学杂志, 35(05): 5-9. (Zhao Y L, Meng F L, Chen L Q, et al.2000, Observations on the reproductive behaviour of Cherax quadricarinatus[J]. Chinese Journal of Zoology, 35(05): 5-9.) [18] 郑建波, 顾志敏, 贾永义, 等. 2023. 一种适于红螯螯虾规模化家系构建的方法及配套养殖设施. 中国, CN114223591B[P]. (Zheng J B, Gu Z M, Jia Y Y, et al.2023. A method and supporting breeding facilities suitable for large-scale family construction of Cherax quadricarinatus. China, CN114223591B[P]) [19] 朱其建, 戴习林, 邹卫丽, 等. 2013. 罗氏沼虾抗病选育群体的抗病性能及其遗传多样性分析[J]. 水产学报, 37(10): 1468-1478. (Zhu Q J, Dai X L,Zou W L, et al.2013. Disease resistance and genetic diversity analysis in selected populations of Macrobrachium rosenbergi[J]. Journal of Fisheries of China, 37(10): 1468-1478.) [20] 庄振俊, 唐美君, 张冬冬, 等. 2023. 中华绒螯蟹“长荡湖1号”连续3个世代的遗传多样性分析[J]. 水生生物学报, 47(09): 1523-1533. (Zhuang Z J, Tang M J, Zhang D D, et al.2023. Genetic diversity of three consecutive generations of Eriocheir sinensis “changdang lake 1”[J]. Acta Hydrobiologica Sinica, 47(09): 1523-1533.) [21] Assaf B, Tal L, Gideon H, et al.1997. Annual cycle of spawning and molting in the red-claw crayfish, Cherax quadricarinatus, under laboratory conditions[J]. Aquaculture, 157(3-4): 239-249. [22] Baker N, Byrne K, Moore S, et al.2000. Characterization of microsatellite loci in the redclaw crayfish, Cherax quadricarinatus[J]. Molecular Ecology, 9(4): 494-495. [23] Baker N, De Bruyn M, Mather P B.2008. Patterns of molecular diversity in wild stocks of the redclaw crayfish (Cherax quadricarinatus) from northern Australia and Papua New Guinea: Impacts of plio‐pleistocene landscape evolution[J]. Freshwater Biology, 53(8): 1592-1605. [24] Botstein D R, White R L, Skolnick M H, et al.1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. The American Journal of Human Genetics, 32(3): 314-331. [25] Chen H L, Zhang R, Liu F, et al.2023. The chromosome-level genome of Cherax quadricarinatus[J]. Scientific Data, 10(1): 215. [26] Ellegren H.2004. Microsatellites: Simple sequences with complex evolution[J]. Nature Reviews Genetics, 5(6): 435-445. [27] Ilan K, Myron Z, Ana M, et al.1998. Culture of the Australian red-claw crayfish (Cherax quadricarinatus) in Israel[J]. Aquaculture, 166(3-4): 259-267. [28] Jones C M, Mcphee C P, Ruscoe I M.2020. A review of genetic improvement in growth rate in redclaw crayfish Cherax quadricarinatus (von Martens)(Decapoda: Parastacidae)[J]. Aquaculture Research, 31(1): 61-67. [29] Kimura M, Crow J F.1964. The number of alleles that can be maintained in a finite population[J]. Genetics, 49(4): 725-738. [30] Mark E M, Jeannette E D, David W K, et al.1994. Heat and oxygen flux as a function of environmental po2 in juvenile Australian crayfish, Cherax quadricarinatus[J]. Journal of Experimental Zoology, 270(5): 460-466. [31] Nei M.1978. Estimation of average heterogosity and genetic distance from a small number of individuals[J]. Genetics, 89: 583-590. [32] Rodgers L J, Saoud P I, Rouse D B.2006. The effects of monosex culture and stocking density on survival, growth and yield of redclaw crayfish (Cherax quadricarinatus) in earthen ponds. Aquaculture[J]. 259(1-4): 164-168. [33] Shannon C E, Weaver W.1950. The mathematical theory of communication[J]. Physics Today, 3(9): 31-32. [34] Slatkin M.1987. Gene flow and the geographic structure of natural populations[J]. Science, 236(4803): 787-792. [35] Slatkin M, Slatkin N, Slatkin D N.1985. Gene flow in natural populations[J]. Annual Review of Ecology & Systematics, 16(1): 393-430. [36] Wright S.1978. Variability Within and Among Natural Populations[M]. University of Chicago Press, Chicago, American. pp. 565. [37] Xie Y N, He L, Sun J L, et al.2010. Isolation and characterization of fifteen microsatellite loci from the redclaw crayfish, Cherax quadricarinatus[J]. Aquatic Living Resources, 23(2): 231-234. [38] Yeh H S, Rouse D B.1994. Indoor spawning and egg development of the red claw crayfish Cherax quadricarinatus[J]. Journal of the World Aquaculture Society, 25(2): 297-302. [39] Yi T L, Guo W J, Liang X F, et al.2015. Microsatellite analysis of genetic diversity and genetic structure in five consecutive breeding generations of mandarin fish Siniperca chuatsi (Basilewsky)[J]. Genetics & Molecular Research , 14(1): 2600-2607.