Epigenetic Mechanisms of Reprogramming of Animal Somatic Cell Nuclear Transfer Embryos
JI Yu-Chen1, LI Yi-Han2, WANG Mei-Juan1, ZHENG Rui-Zhi1, YU Tong1, SU Jian-Min1,*
1 Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; 2 Key Laboratory of Animal Biotechnology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
Abstract:Somatic cell nuclear transfer (SCNT) technology can be used to expand the production of top livestock and gene editing animals. So far, humans have successfully cloned more than 20 kinds of animals, but the efficiency of cloned animals obtained through somatic cell nuclear transfer technology is relatively low. Most somatic cell nuclear transfer embryos die before implantation. After nuclear transfer, the donor nucleus will undergo a series of reprogramming events to obtain the totipotency of embryonic development. The abnormal reprogramming of somatic cell nuclear transfer embryos is the main reason leading to the low efficiency of somatic cell nuclear transfer. In this paper, the abnormal reprogramming mechanisms of somatic cell nuclear transfer embryos were analyzed, such as chromatin remodeling, DNA methylation, variations and modifications of histones, sperm small RNA, etc., so as to provide reference for further research on the reprogramming of somatic cell nuclear transfer embryos.
[1] 梁振鑫, 刘芳, 张玮, 等. 2019. 抗p185~(erbB2)人鼠嵌合抗体ChAb26转基因小鼠乳腺生物反应器的制备与验证[J]. 中国生物工程杂志, 39(8): 40-51. (Liang Z X, Liu F, Zhang W, et al.2019. Preparation and validation of a mammary gland bioreactor for transgenic mice with anti p185~(erbB2) human mouse chimeric antibody ChAb26[J]. Chinese Journal of Biotechnology, 39(8): 40-51.) [2] 杨忠财, 邱明宁, 刘红亮, 等. 2013. 生物反应器在干细胞培养中的应用研究进展[J]. 中国细胞生物学学报, 35(3): 129-135. (Yang Z C, Qiu M N, Liu H L, et al.2013. Research progress on the application of bioreactors in stem cell culture[J]. Chinese Journal of Cell Biology, 35(3): 129-135.) [3] 张涌. 1991. 山羊卵核移植成功[J]. 中国农业科学, (02): 91-92. (Zhang Y. Successful transfer of goat egg nucleus[J]. Chinese Agricultural Sciences, (02): 91-92.) [4] 张迎冰, 于芮峦, 乔培培, 等. 2021. CAF-1在体细胞重编程中的作用机制[J]. 畜牧兽医学报, 52(7): 1769-1777. (Zhang Y B, Yu R L, Qiao P P, et al.2021. The mechanism of action of CAF-1 in somatic cell reprogramming[J]. Journal of Animal Husbandry and Veterinary Medicine, 52(7): 1769-1777.) [5] Akagi S, Matsukawa K.2022. Effects of trichostatin A on the timing of the first cleavage and in vitro developmental potential of bovine somatic cell nuclear transfer embryos[J]. Cellular Reprogramming, 24(3): 142-149. [6] Bormhall I D.1975.Nuclear transplantation in the rabbit egg[J]. Nature, 258(5537): 719-722. [7] Bu G, Zhu W, Liu X, et al.2022. Coordination of zygotic genome activation entry and exit by H3K4me3 and H3K27me3 in porcine early embryos[J]. Genome Research, 32(8): 1487-1501. [8] Bui H T, Wakayama S, Kishigami S, et al.2010. Effect of trichostatin A on chromatin remodeling, histone modifications, DNA replication, and transcriptional activity in cloned mouse embryos[J]. Biology of Reproduction, 83(3): 454-463. [9] Campbell K H, Loi P, Otaegui P J, et al.1996. Cell cycle co-ordination in embryo cloning by nuclear transfer[J]. Reviews of Reproduction, 1(1): 40-46. [10] Cao P, Li H, Zuo Y, et al.2020 .Characterization of DNA methylation patterns and mining of epigenetic markers during genomic reprogramming in SCNT embryos[J]. Frontiers in Cell and Developmental Biology, 8: 570107. [11] Chan M M, Smith Z D, Egli D, et al.2012. Mouse ooplasm confers context-specific reprogramming capacity[J]. Nature Genetics, 44(9): 978-980. [12] Chang C C, Gao S, Sung L Y, et al.2010. Rapid elimination of the histone variant MacroH2A from somatic cell heterochromatin after nuclear transfer[J]. Cellular Reprogramming, 12(1): 43-53. [13] Chen M, Zhu Q, Li C, et al.2020 .Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos[J]. Nature Communications, 11(1): 1813. [14] Chung Y G, Matoba S, Liu Y, et al.2015. Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells[J]. Cell Stem Cell, 17(6): 758-766. [15] Cibelli J B, Stice S L, Golueke P J, et al.1998. Cloned transgenic calves produced from nonquiescent fetal fibroblasts[J]. Science. 280(5367): 1256-1258. [16] Clapier C R, Iwasa J, Cairns B R, et al.2017. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes[J]. Nature Reviews. Molecular Cell Biology, 18(7): 407-422. [17] Colman A.1999. Dolly, polly and other 'Ollys': Likely impact of cloning technology on biomedical uses of livestock[J]. Genetic Analysis: Biomolecular Engineering 15(3-5): 167-173. [18] Dang Y, Luo L, Shi Y, et al.2022. KDM5-mediated redistribution of H3K4me3 is required for oocyte-to-embryonic transition in cattle[J]. Biology of Reproduction, 106(6): 1059-1071. [19] De Macedo M P, Glanzner W G, Gutierrez K, et al.2022. Simultaneous inhibition of histone deacetylases and RNA synthesis enables totipotency reprogramming in pig SCNT embryos[J]. International Journal of Molecular Sciences, 23(22): 14142. [20] Deng M, Wan Y, Chen B, et al.2021. Long non-coding RNA lnc_3712 impedes nuclear reprogramming via repressing Kdm5b[J]. Molecular Therapy. Nucleic Acids, 24: 54-66. [21] Ding B, Cao Z, Hong R, et al.2017. WDR5 in porcine preimplantation embryos: Expression, regulation of epigenetic modifications and requirement for early development[J]. Biology of Reproduction, 96(4): 758-771. [22] Gao R, Wang C, Gao Y, et al.2018.Inhibition of aberrant DNA Re-methylation improves post-implantation development of somatic cell nuclear transfer embryos[J]. Cell Stem Cell, 23(3): 426-435.e5. [23] Gao S, Chung Y G, Parseghian M H, et al.2004. Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer: Evidence for a uniform developmental program in mice[J]. Developmental Biology, 266(1): 62-75. [24] Gao Y, Wu H, Wang Y, et al.2017. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects[J]. Genome Biology, 18(1): 13. [25] Giaimo B D, Ferrante F, Herchenröther A, et al.2019. The histone variant H2A.Z in gene regulation[J]. Epigenetics & Chromatin, 12(1): 37. [26] Greenberg M V C, Bourc'His D.2019. The diverse roles of DNA methylation in mammalian development and disease[J]. Nature Reviews. Molecular Cell Biology, 20(10): 590-607. [27] Guo Z, Chen W, Lv L, et al.2021. Meta-analysis of melatonin treatment and porcine somatic cell nuclear transfer embryo development[J]. Animal Reproduction, 18(3): e20210031. [28] Gurdon J B, Elsdale T R, Fischberg M.1958. Sexually mature individuals of Xenopus laevis fromthe transplantation of single somatic nuclei[J]. Nature. 182(4627): 64-65. [29] Gurdon J B, Uehlinger V.1966. "Fertile" intestine nuclei[J].Nature, 210(5042): 1240-1241. [30] Hörmanseder E, Simeone A, Allen G E, et al.2017. H3K4 Methylation-dependent memory of somatic cell identity inhibits reprogramming and development of nuclear transfer embryos[J]. Cell Stem Cell, 21(1): 135-143.e6. [31] Huang X W, Cheng X R, Wang N, et al.2018. Histone variant H3.3 and its functions in reprogramming[J]. Yi Chuan = Hereditas, 40(3): 186-196. [32] Inoue K, Ogonuki N, Kamimura S, et al.2020. Loss of H3K27me3 imprinting in the Sfmbt2 miRNA cluster causes enlargement of cloned mouse placentas[J]. Nature Communications, 11(1): 2150. [33] Jambhekar A, Dhall A, Shi Y.2019. Roles and regulation of histone methylation in animal development[J]. Nature Reviews. Molecular Cell Biology, 20(10): 625-641. [34] Jeong P S, Sim B W, Park S H, et al.2020. Chaetocin improves pig cloning efficiency by enhancing epigenetic reprogramming and autophagic activity[J]. International Journal of Molecular Sciences, 21(14): 4836. [35] Jeong P S, Yang H J, Park S H, et al.2021. Combined chaetocin/trichostatin A treatment improves the epigenetic modification and developmental competence of porcine somatic cell nuclear transfer embryos[J]. Frontiers in Cell and Developmental Biology, 9: 709574. [36] Jia D D Jiang H, Zhang Y F, et al.2022.The regulatory function of piRNA/PIWI complex in cancer and other human diseases: The role of DNA methylation[J]. International Journal of Biological Sciences, 18(8): 3358-3373. [37] Jiang X, Soboleva T A, Tremethick D J, et al.2020. Short histone H2A Variants: Small in stature but not in function[J]. Cells, 9(4): 867. [38] Jin C, Felsenfeld G.2007. Nucleosome stability mediated by histone variants H3.3 and H2A.Z[J]. Genes & Development, 21(12): 1519-1529. [39] Jullien J, Astrand C, Halley-Stott R P, et al.2010. Characterization of somatic cell nuclear reprogramming by oocytes in which a linker histone is required for pluripotency gene reactivation[J]. Proceedings of the National Academy of Sciences of the USA, 107(12): 5483-5488. [40] Jullien J, Miyamoto K, Pasque V, et al.2014. Hierarchical molecular events driven by oocyte-specific factors lead to rapid and extensive reprogramming[J]. Molecular Cell, 55(4): 524-536. [41] Kang Y K, Koo D B, Park J S, et al.2001. Aberrant methylation of donor genome in cloned bovine embryos[J]. Nature Genetics, 28(2): 173-177. [42] Kawamura M, Funaya S, Sugie K, et al.2021. Asymmetrical deposition and modification of histone H3 variants are essential for zygote development[J]. Life Science Alliance, 4(8): e202101102. [43] Korody M L, Ford S M, Nguyen T D, et al.2021. Rewinding extinction in the northern white rhinoceros: Genetically diverse induced pluripotent stem cell bank for genetic rescue[J]. Stem Cells and Development, 30(4): 177-189. [44] Li Q, Pan Y, He H, et al.2019. DNA methylation regulated by ascorbic acids in yak preimplantation embryo helps to improve blastocyst quality[J]. Molecular Reproduction and Development, 86(9): 1138-1148. [45] Li Y, Sun Q.2022. Epigenetic manipulation to improve mouse SCNT embryonic development[J]. Frontiers in Genetics, 13: 932867. [46] Liu X, Wang Y, Guo W, et al.2013. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows[J]. Nature Communications, 4: 2565. [47] Liu X, Wang Y, Tian Y, et al.2014. Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases[J]. Proceedings. Biological Sciences, 281(1780): 20133368. [48] Liu X, Wang Y, Gao Y, et al.2018a. H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming[J]. Development (Cambridge, England), 145(4): dev158261. [49] Liu X, Chen L, Wang T, et al.2021. TDG is a pig-specific epigenetic regulator with insensitivity to H3K9 and H3K27 demethylation in nuclear transfer embryos[J]. Stem Cell Reports, 16(11): 2674-2689. [50] Liu Z, Cai Y, Wang Y, et al.2018b. Cloning of macaque monkeys by somatic cell nuclear transfer[J]. Cell, 172(4): 881-887.e7. [51] Liu Z, Li M, Sun Y, et al.2022. Epigenetic dynamics of H4K20me3 modification during oocyte maturation and early reprogramming of somatic cell nuclear transfer goat embryos[J]. American Journal of Translational Research, 14(8): 5941-5951. [52] Ma H, Morey R, O'Neil R C, et al.2014. Abnormalities in human pluripotent cells due to reprogramming mechanisms[J]. Nature, 511(7508): 177-183. [53] Matoba S, Liu Y, Lu F, et al.2014. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation[J]. Cell, 159(4): 884-895. [54] Matoba S, Wang H, Jiang L, et al.2018. Loss of H3K27me3 imprinting in somatic cell nuclear transfer embryos disrupts post-implantation development[J]. Cell Stem Cell, 23(3): 343-354.e5. [55] Matoba S, Zhang Y.2018. Somatic cell nuclear transfer reprogramming: Mechanisms and applications[J]. Cell Stem Cell, 23(4): 471-485. [56] Mills A A.2017. The chromodomain helicase DNA-Binding chromatin remodelers: Family traits that protect from and promote cancer[J]. Cold Spring Harbor Perspectives in Medicine, 7(4): a026450. [57] Miri K, Latham K, Panning B, et al.2013. The imprinted polycomb group gene Sfmbt2 is required for trophoblast maintenance and placenta development[J]. Development (Cambridge, England), 140(22): 4480-4489. [58] Nashun B, Akiyama T, Suzuki M G, et al.2011. Dramatic replacement of histone variants during genome remodeling in nuclear-transferred embryos[J]. Epigenetics, 6(12): 1489-1497. [59] Neve B, Jonckheere N, Vincent A, et al.2021. Long non-coding RNAs: The tentacles of chromatin remodeler complexes[J]. Cellular and molecular life sciences, 78(4): 1139-1161. [60] Okae H, Matoba S, Nagashima T, et al.2014. RNA sequencing-based identification of aberrant imprinting in cloned mice[J]. Human Molecular Genetics, 23(4): 992-1001. [61] Pang M Y H, Sun X, Ausió J, et al. 2020. Histone H4 variant, H4G, drives ribosomal RNA transcription and breast cancer cell proliferation by loosening nucleolar chromatin structure[J]. Journal of Cellular Physiology, 2020, 235(12): 9601-9608. [62] Polejaeva I A, Chen S H, Vaught T D, et al.2000. Cloned pigs produced by nuclear transfer from adult somatic cells[J]. Nature. 407(6800): 86-90. [63] Qin H, Qu P, Hu H, et al.2021. Sperm-borne small RNAs improve the developmental competence of pre-implantation cloned embryos in rabbit[J]. Zygote (Cambridge, England), 29(5): 331-336. [64] Qu P, Zuo Z, Liu Z, et al.2019. Sperm-borne small RNAs regulate α-tubulin acetylation and epigenetic modification of early bovine somatic cell nuclear transfer embryos[J]. Molecular Human Reproduction, 25(8): 471-482. [65] Ross R J, Weiner M M, Lin H.2014. PIWI proteins and PIWI-interacting RNAs in the soma[J]. Nature, 505: 353-359. [66] Sampaio R V, Sangalli J R, De Bem T H C, et al.2020. Catalytic inhibition of H3K9me2 writers disturbs epigenetic marks during bovine nuclear reprogramming[J]. Scientific Reports, 10(1): 11493. [67] Singh B, Mal G, Verma V, et al.2021. Stem cell therapies and benefaction of somatic cell nuclear transfer cloning in COVID-19 era[J]. Stem Cell Research & Therapy, 12(1): 283. [68] Smith Z D, Chan M M, Mikkelsen T S, et al.2012. A unique regulatory phase of DNA methylation in the early mammalian embryo[J]. Nature, 484(7394): 339-344. [69] Su J, Wang Y, Xing X, et al.2015. Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos[J]. Journal of Pineal Research, 59(4): 455-468. [70] Sun Z, Bernstein E.2019. Histone variant macroH2A: From chromatin deposition to molecular function[J]. Essays in Biochemistry, 63(1): 59-74. [71] Swegen A, Appeltant R, Williams S A, 2023. Cloning in action: can embryo splitting, induced pluripotency and somatic cell nuclear transfer contribute to endangered species conservation?[J]. Biological Reviews of the Cambridge Philosophical Society, 98(4): 1225-1249. [72] Tunstall T, Kock R, Vahala J, et al.2018.Evaluating recovery potential of the northern white rhinoceros from cryopreserved somatic cells[J]. Genome Research, 28(6): 780-788. [73] Wang C, Liu X, Gao Y, et al.2018a. Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development[J]. Nature Cell Biology, 20(5): 620-631. [74] Wang F, Kou Z, Zhang Y, et al.2007. Dynamic reprogramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos[J]. Biology of Reproduction, 77(6): 1007-1016. [75] Wang H, Cui W, Meng C, et al.2018b. MC1568 enhances histone acetylation during oocyte meiosis and improves development of somatic cell nuclear transfer embryos in pig[J]. Cellular Reprogramming, 20(1): 55-65. [76] Wang L, Xu Z, Wang L, et al.2021. Histone H2B ubiquitination mediated chromatin relaxation is essential for the induction of somatic cell reprogramming[J]. Cell Proliferation, 54(8): e13080. [77] Wang L Y, Li Z K, Wang L B, et al.2020a. Overcoming intrinsic H3K27me3 imprinting barriers improves post-implantation development after somatic cell nuclear transfer[J]. Cell Stem Cell, 27(2): 315-325.e5. [78] Wang Y, Li Y, Luan D, et al.2020b. Dynamic replacement of H3.3 affects nuclear reprogramming in early bovine SCNT embryos[J]. Theriogenology, 154: 43-52. [79] Wang Y, Liu Q, Kang J, et al.2020c. Overexpression of PGC7 in donor cells maintains the DNA methylation status of imprinted genes in goat embryos derived from somatic cell nuclear transfer technology[J]. Theriogenology, 151: 86-94. [80] Wen D, Banaszynski L A, Rosenwaks Z, et al.2014. H3.3 replacement facilitates epigenetic reprogramming of donor nuclei in somatic cell nuclear transfer embryos[J]. Nucleus, 5(5): 369-375. [81] Weng X G, Cai M M, Zhang Y T, et al.2020. Improvement in vitro development of cloned pig embryos after kdm4a overexpression and an H3K9me3 methyltransferase inhibitor treatment[J]. Theriogenology, 146: 162-170. [82] Wu H, Wang Y, Zhang Y, et al.2015. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis[J]. Proceedings of the National Academy of Sciences of the USA, 112(13): E1530-1539. [83] Wu L, Zhao G, Xu S, et al.2021. The nuclear factor CECR2 promotes somatic cell reprogramming by reorganizing the chromatin structure[J]. The Journal of Biological Chemistry, 296: 100022. [84] Wu Y, Zuo Z, Wang Z, et al.2023. Bta-miR-183 targets ezrin to regulate microvilli formation and improve early development of bovine embryos[J]. Reproduction (Cambridge, England), 165(4): 363-371. [85] Xie J, Ge W, Li N, et al.2019. Efficient base editing for multiple genes and loci in pigs using base editors[J]. Nature Communications, 10(1): 2852. [86] Xie Z, Zhang W, Zhang Y.2022. Loss of Slc38a4 imprinting is a major cause of mouse placenta hyperplasia in somatic cell nuclear transferred embryos at late gestation[J]. Cell Reports, 38(8): 110407. [87] Yang G, Zhang L, Liu W, et al.2021a. Dux-mediated corrections of aberrant H3K9ac during 2-Cell genome activation optimize efficiency of somatic cell nuclear transfer[J]. Cell Stem Cell, 28(1): 150-163.e5. [88] Yang L, Xu X, Xu R, et al.2022. Aberrant nucleosome organization in mouse SCNT embryos revealed by ULI-MNase-seq[J]. Stem Cell Reports, 17(7): 1730-1742. [89] Yang Q, Qiao C M, Liu W W, et al.2021b. Genome-wide DNA methylation and transcription analysis in tongue and biceps femoris muscles of cloned pigs with macroglossia[J]. Animal Genetics, 52(5): 608-620. [90] Yu T, Meng R, Song W, et al.2023. ZFP57 regulates DNA methylation of imprinted genes to facilitate embryonic development of somatic cell nuclear transfer embryos in Holstein cows[J]. Journal of Dairy Science, 106(1): 769-782. [91] Zhai Y, Li W, Zhang Z, et al.2018. Epigenetic states of donor cells significantly affect the development of somatic cell nuclear transfer (SCNT) embryos in pigs[J]. Molecular Reproduction and Development, 85(1): 26-37. [92] Zhang J, Qu P, Zhou C, et al.2017. MicroRNA-125b is a key epigenetic regulatory factor that promotes nuclear transfer reprogramming[J]. The Journal of Biological Chemistry, 292(38): 15916-15926. [93] Zhang K, Wu D Y, Zheng H, et al.2020. Analysis of genome architecture during SCNT reveals a role of cohesin in impeding minor ZGA[J]. Molecular Cell, 79(2): 234-250.e9. [94] Zhang L, Yuan M, Huang X, et al.2022a. Inhibition of METTL5 improves preimplantation development of mouse somatic cell nuclear transfer embryos[J]. Reproduction (Cambridge, England), 164(5): 221-230. [95] Zhang Y, Yang Y, Qiao P, et al.2022b. CHAF1b, chromatin assembly factor-1 subunit b, is essential for mouse preimplantation embryos[J]. International Journal of Biological Macromolecules, 195: 547-557. [96] Zhang Y, Zhang C, Wu Y, et al.2023. Principle and development of single base editing technology and its application in livestock breeding[J]. Chinese Journal of Biotechnology, 39(1): 19-33. [97] Zheng H, Huang B, Zhang B, et al.2016. Resetting epigenetic memory by reprogramming of histone modifications in mammals[J]. Molecular Cell, 63(6): 1066-1079. [98] Zhou C, Wang Y, Zhang J, et al.2019. H3K27me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency[J]. FASEB Journal, 33(3): 4638-4652. [99] Zhu J, Chen K, Sun Y H, et al.2023. LSM1-mediated Major Satellite RNA decay is required for nonequilibrium histone H3.3 incorporation into parental pronuclei[J]. Nature Communications, 14(1): 957. [100] Zlatanova J, Thakar A.2008. H2A.Z: View from the top[J]. Structure (London, England: 1993), 16(2): 166-179.