Research Progress on the Application of Gene-editing Technology in Pig (Sus scrofa) Breeding for Disease Resistance
YAN Ying*, ZHAO Wu-Di*, ZHU Xiang-Xing**, TANG Dong-Sheng**
Guangdong Key Laboratory of Animal Molecular Design and Precision Breeding/Guangdong Gene Editing Engineering Technology Research Center, Foshan University, Foshan 528225, China
Abstract:As the world's largest producer and consumer of pork, the high-quality development of the pig (Sus scrofa) industry in China is directly related to the country's food safety and economic security. In recent years, outbreaks of African swine fever, Porcine reproductive and respiratory syndrome and Porcine epidemic diarrhea have caused significant economic losses to the pig farming industry. Traditional prevention and control methods face challenges such as lagging vaccine development and drug residues. Traditional disease resistant breeding has a long cycle and slow progress, and there is an urgent need to develop safer and more effective breeding technologies. The emerging gene editing technology, with advantages such as high efficiency, precision, and convenience, has shown great potential in agricultural animal breeding, including pigs, in recent years, providing strong technical support for the cultivation of new disease resistant pig breeds. This article systematically reviews the development history of gene editing technology, with a focus on analyzing the research progress of CRISPR/Cas9 and its derivative technologies in pig disease resistant breeding, aiming to provide theoretical basis and technical guidance for gene editing disease resistant pig breeding research.
[1] 何文瑞, 廖亚金, 李素, 等. 2015. 猪瘟病毒衣壳蛋白与宿主丝/苏氨酸蛋白激酶N1相互作用的鉴定[J]. 中国预防兽医学报, 37(7): 495-498. (He W R, Liao Y J, Li S, et al.2015. Identification of the interaction of Swine fever virus coat protein with host serine/threonine protein kinase N1[J]. Chinese Journal of Preventive Veterinary Medicine, 37(7): 495-498.) [2] 李双喜, 华进联. 2023. 抗猪繁殖与呼吸障碍综合征基因编辑猪研究进展[J].生物技术通报, 39(10): 50-57. (Li S X, Hua J L.2023.Progress of research on gene-edited pigs resistant to Porcine reproductive and respiratory syndrome[J]. Biotechnology Bulletin, 39(10): 50-57.) [3] 杨帅朋, 屈子啸, 朱向星, 等. 2024. DNA 碱基编辑技术的研究进展及在猪基因修饰中的应用[J]. 生物技术通报, 40(1): 127-144. (Yang S P, Qu Z X, Zhu X X, et al.2024.Optimization of DNA base editing technology and its application in pig genetic modification[J]. Biotechnology Bulletin, 40(1): 127-144. [4] 杨松柏, 黄菁, 段星, 等. 2025.猪抗病育种候选基因研究进展[J]. 农业生物技术学报, 33(2): 410-426. (Yang S B, Huang J, Duan X, et al.2025.Progress in research on candidate genes for disease resistance breeding in pigs[J]. Journal of Agricultural Biotechnology, 33(2): 410-426.) [5] 赵为民, 王慧利, 曹少先, 等. 2022. 猪CD163基因的单碱基编辑研究[J]. 畜牧兽医学报, 53(4): 1041-1050. (Zhao W M, Wang H L, Cao S X, et al.2022. Single-base editing study of porcine CD163 gene[J]. Journal of Animal Husbandry and Veterinary Science, 53(4): 1041-1050.) [6] 赵无迪, 黄国斌, 朱向星, 等. 2023.碱基编辑技术在猪遗传改良中的应用研究进展[J]. 生物工程学报, 39(10): 3936-3947. (Zhao W D, Huang G B, Zhu X X, et al.2023. Research progress on the application of base editing technology in genetic improvement of pigs[J]. Journal of Bioengineering, 39(10): 3936-3947.) [7] Anzalone A V, Koblan L W, Liu D R.2020. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nature Biotechnology, 38(7): 824-844. [8] Anzalone A V, Randolph P B, Davis J R, et al.2019. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 576(7785): 149-157. [9] Burkard C, Lillico S G, Reid E, et al.2017. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J]. PLOS Pathogens, 13(2): e1006206. [10] Chen L, Hong M, Luan C, et al.2024. Adenine transversion editors enable precise, efficient A•T-to-C•G base editing in mammalian cells and embryos[J]. Nature Biotechnology, 42(4): 638-650. [11] Chen L, Zhang S, Xue N, et al.2023. Engineering a precise adenine base editor with minimal bystander editing[J]. Nature Chemical Biology, 19(1): 101-110. [12] Cong L, Ran F A, Cox D, et al.2013. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 339(6121): 819-823. [13] Crooke H, Schwindt S, Fletcher S L, et al.2025. DNAJC14 gene-edited pigs are resistant to Classical pestiviruses[J]. Trends in Biotechnology, S0167-7799(25)00365-8. [14] Doudna J A, Charpentier E.2014. The new frontier of genome engineering with CRISPR/Cas9[J]. Science, 346(6213): 1258096. [15] Fatima M, Luo Y, Zhang L, et al.2021. Genotyping and molecular characterization of Classical swine fever virus isolated in China during 2016-2018[J]. Viruses, 13(4): 664. [16] Founou L L, Founou R C, Essack S Y.2016. Antibiotic resistance in the food chain: A developing country-perspective[J]. Frontiers in Microbiology, 7: 1881. [17] Gao F, Li P, Yin Y, et al.2023. Molecular breeding of livestock for disease resistance[J]. Virology, 587: 109862. [18] Gao Q, Yang Y, Luo Y, et al.2022. Adaptation of African swine fever virus to porcine kidney cells stably expressing CD163 and Siglec1[J]. Frontiers in Immunology, 13: 1015224. [19] Gaudelli N M, Komor A C, Rees H A, et al.2017. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage[J]. Nature, 551(7681): 464-471. [20] Gaudelli N M, Lam D K, Rees H A, et al.2020. Directed evolution of adenine base editors with increased activity and therapeutic application[J]. Nature Biotechnology, 38(7): 892-900. [21] Grünewald J, Zhou R, Lareau C A, et al.2020. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nature Biotechnology, 38(7): 861-864. [22] Ishino Y, Shinagawa H, Makino K, et al.1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 169(12): 5429-5433. [23] Jinek M, Chylinski K, Fonfara I, et al.2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 337(6096): 816-821. [24] Kim Y G, Cha J, Chandrasegaran S.1996. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain[J]. Proceedings of the National Academy of Sciences of the USA, 93(3): 1156-1160. [25] Koblan L W, Arbab M, Shen M W, et al.2021. Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning[J]. Nature Biotechnology, 39(11): 1414-1425. [26] Koblan L W, Doman J L, Wilson C, et al.2018. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J]. Nature Biotechnology, 36(9): 843-846. [27] Komor A C, Kim Y B, Packer M S, et al.2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 533(7603): 420-424. [28] Kosicki M, Tomberg K, Bradley A.2018. Repair of double-strand breaks induced by CRISPR/Cas9 leads to large deletions and complex rearrangements[J]. Nature Biotechnology, 36(8): 765-771. [29] Kurt I C, Zhou R, Iyer S, et al.2021. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells[J]. Nature Biotechnology, 39(1): 41-46. [30] Li C, Zhang R, Meng X, et al.2020. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nature Biotechnology, 38(7): 875-882. [31] Li J, Zhou J, Zhang T, et al.2024. Effective inhibition of PDCoV infection in chimeric APN gene-edited neonatal pigs[J]. Journal of Virology, 98(8): e0061124. [32] Li W, Luo R, He Q, et al.2017. Aminopeptidase N is not required for Porcine epidemic diarrhea virus cell entry[J]. Virus Research, 235: 6-13. [33] Lillico S G, Proudfoot C, King T J, et al.2016. Mammalian interspecies substitution of immune modulatory alleles by genome editing[J]. Scientific Reports, 6: 21645. [34] Ma N, Zhang M, Zhou J, et al.2024. Genome-wide CRISPR/Cas9 library screen identifies C16orf62 as a host dependency factor for Porcine deltacoronavirus infection[J]. Emerging Microbes & Infections, 13(1): 2400559. [35] McCleary S, Strong R, McCarthy R R, et al.2020. Substitution of warthog NF-κB motifs into RELA of domestic pigs is not sufficient to confer resilience to African swine fever virus[J]. Scientific Reports, 10(1): 8951. [36] Miller J C, Tan S, Qiao G, et al.2011. A TALE nuclease architecture for efficient genome editing[J]. Nature Biotechnology, 29(2): 143-148. [37] Palgrave C J, Gilmour L, Lowden C S, et al.2011. Species-specific variation in RELA underlies differences in NF-κB activity: A potential role in African swine fever pathogenesis[J]. Journal of Virology, 85(12): 6008-6014. [38] Park K E, Kaucher A V, Powell A, et al.2017. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene[J]. Scientific Reports, 7: 40176. [39] Popescu L, Gaudreault N N, Whitworth K M, et al.2017. Genetically edited pigs lacking CD163 show no resistance following infection with the African swine fever virus isolate, Georgia 2007/1[J]. Virology, 501: 102-106. [40] Prather R S, Rowland R R, Ewen C, et al.2013. An intact sialoadhesin (Sn/SIGLEC1/CD169) is not required for attachment/internalization of the Porcine reproductive and respiratory syndrome virus[J]. Journal of Virology, 87(17): 9538-9546. [41] Qi C, Pang D, Yang K, et al.2022. Generation of PCBP1-deficient pigs using CRISPR/Cas9-mediated gene editing[J]. iScience, 25(10): 105268. [42] Rees H A, Liu D R.2018. Base editing: Precision chemistry on the genome and transcriptome of living cells[J]. Nature Reviews Genetics, 19(12): 770-788. [43] Reuscher C M, Seitz K, Schwarz L, et al.2022. DNAJC14-independent replication of the Atypical porcine pestivirus[J]. Journal of Virology, 96(15): e0198021. [44] Richter M F, Zhao K T, Eton E, et al.2020. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity[J]. Nature Biotechnology, 38(7): 883-891. [45] Scherer S, Davis R W.1979. Replacement of chromosome segments with altered DNA sequences constructed in vitro[J]. Proceedings of the National Academy of Sciences of the USA, 76(10): 4951-4955. [46] Sun Q, Xu H, An T, et al.2023. Recent progress in studies of Porcine reproductive and respiratory syndrome virus 1 in China[J]. Viruses, 15(7): 1528. [47] Tong H, Wang X, Liu Y, et al.2023. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase[J]. Nature Biotechnology, 41(8): 1080-1084. [48] Tu C F, Chuang C K, Hsiao K H, et al.2019. Lessening of Porcine epidemic diarrhoea virus susceptibility in piglets after editing of the CMP-N-glycolylneuraminic acid hydroxylase gene with CRISPR/Cas9 to nullify N-glycolylneuraminic acid expression[J]. Public Library of Science ONE, 14(5): e0217236. [49] Wang D, Fang L, Xiao S.2016. Porcine epidemic diarrhea in China[J]. Virus Research, 226: 7-13. [50] Wang X, Yu H, Lei A, et al.2015. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system[J]. Scientific Reports, 5: 13878. [51] Wang Y, Bi D, Qin G, et al.2020.Cytosine base editor (ha3a-be3-ng)-mediated multiple gene editing for pyramid breeding in pigs[J]. Frontiers in Genetics, 11: 592623. [52] Whitworth K M, Rowland R R, Ewen C L, et al.2016. Gene-edited pigs are protected from Porcine reproductive and respiratory syndrome virus[J]. Nature Biotechnology, 34(1): 20-22. [53] Xiang G, Ren J, Hai T, et al.2018. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs[J]. Cellular and Molecular Life Sciences, 75(24): 4619-4628. [54] Xie Z, Jiao H, Xiao H, et al.2020. Generation of pRSAD2 gene knock-in pig via CRISPR/Cas9 technology[J]. Antiviral Research, 174: 104696. [55] Xie Z, Pang D, Yuan H, et al.2018. Genetically modified pigs are protected from Classical swine fever virus[J]. PLOS Pathogens, 14(12): e1007193. [56] Xu K, Zhou Y, Mu Y, et al.2020. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J]. Elife, 9: e57132. [57] Yang S P, Zhu X X, Qu Z X, et al.2023. Production of MSTN knockout porcine cells using adenine base-editing-mediated exon skipping[J]. In Vitro Cellular and Developmental Biology. Animal, 59(4): 241-255. [58] Yang Y L, Liu J, Wang T Y, et al.2021. Aminopeptidase N is an entry co-factor triggering Porcine deltacoronavirus entry via an endocytotic pathway[J]. Journal of Virology, 95(21): e0094421. [59] You S, Liu T, Zhang M, et al.2021. African swine fever outbreaks in China led to gross domestic product and economic losses[J]. Nature Food, 2(10): 802-808. [60] Yuan M, Jiang Z, Bi G, et al.2021. Pattern-recognition receptors are required for NLR-mediated plant immunity[J]. Nature, 592(7852): 105-109. [61] Zhang X, Zhu B, Chen L, et al.2020. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nature Biotechnology, 38(7): 856-860. [62] Zhang Y, Chen Y, Zhou J, et al.2022. Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis[J]. Viruses, 14(11): 2434. [63] Zhang Y, Mei X, Zhang C, et al.2024. ASFV subunit vaccines: Strategies and prospects for future development[J]. Microbial Pathogenesis, 197: 107063. [64] Zhao D, Li J, Li S, et al.2021. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nature Biotechnology, 39(1): 35-40. [65] Zuris J A, Thompson D B, Shu Y, et al.2015. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo[J]. Nature Biotechnology, 33(1): 73-80.