Analysis of Biofilm Formation Ability and Influencing Factors of Yak (Bos grunniens) Pathogenic Escherichia coli
GAO Xiang1,*, LI Hui-Ping1, LANG Xiao1, HE Zi-Wen1, WANG Jing-Hong1, WANG Xia1, NING Jian-Gang2,*
1 College of Biological Engineering and Technology, Tianshui Normal University, Tianshui 741001, China; 2 Gansu Province Tianzhu Tibetan Autonomous County Agriculture and Rural Bureau, Tianzhu 733299, China
Abstract:Biofilms exist widely in the natural environment. As one of the important anti-stress mechanisms of bacteria, they have strong resistance, pathogenicity and immune escape functions. The aim of this study was to establish a biofilm-forming model strain of yak (Bos grunniens) pathogenic Escherichia coli (YPEC), and to explore the effects of various boundary factors on the biofilm formation of YPEC. In this study, the isolates strains of YPEC Tianzhu-1, Tianzhu-2, Tianzhu-3, Qinghai-2, Qinghai-3 and Qinghai-4 were selected as the research object. Microplate quantative method was used to identify the biofilm formation ability of YPEC, and strains with strong biofilm formation were selected as the dominant strains, and then the influencing factors of biofilm formation amount were analyzed. The results showed that different isolates of YPEC had different biofilm forming abilities. Tianzhu-1, Tianzhu-2, and Tianzhu-3 strains were all strong biofilm formers, while Qinghai-3 and Qinghai-4 strains were medium biofilm formers, and Qinghai-2 strain were weak biofilm formers. Among them, Tianzhu-3 strain had the strongest ability to form biofilms (P<0.05). The optimal amount of biofilm formation of Tianzhu-3 strains was achieved when culture time was 24 h, temperature was 37 ℃, pH 7.5, initial bacterial solution concentration was 1.3×109 CFU/mL and 10% bacterial liquid ratio. The addition of 20 μg/mL DNA and 2% sucrose in LB medium could promote the formation of biofilm, while the addition of different concentrations of NaCl, glucose, and lactose all had inhibitory effects on the formation of biofilms. The above results provide data support and theoretical basis for YPEC prevention and control from the perspective of biofilm.
高翔, 黎会苹, 郎啸, 贺子文, 王婧虹, 王霞, 宁建刚. 牦牛致病性大肠杆菌生物被膜形成能力及影响因素分析[J]. 农业生物技术学报, 2024, 32(4): 873-881.
GAO Xiang, LI Hui-Ping, LANG Xiao, HE Zi-Wen, WANG Jing-Hong, WANG Xia, NING Jian-Gang. Analysis of Biofilm Formation Ability and Influencing Factors of Yak (Bos grunniens) Pathogenic Escherichia coli. 农业生物技术学报, 2024, 32(4): 873-881.
[1] 曹启航, 刘圆园, 孙亚楠, 等. 2020. 不同培养条件对单核细胞增生李斯特菌生物被膜形成的影响[J]. 中国兽医科学, 50(12): 1563-1571. (Cao Q H, Liu Y Y, Sun Y N, et al.2020. Effect of different culture conditions on the formation of biofilm of Listeria monocytogenes[J]. Chinese Veterinary Science, 50(12): 1563-1571.) [2] 段韵涵, 韩北忠, 杨葆华, 等. 2008. 培养条件对金黄色葡萄球菌生物被膜生长的影响[J]. 中国酿造, 180(3): 17-20. (Duan Y H, Han B Z, Yang B H, et al.2008. Effect of cultivation on grown of Staphylococcus aureus biofilms[J]. China Brewing, 180(3): 17-20.) [3] 邓小玲, 孙影, 尤向峰, 等. 2021. 禽致病性大肠杆菌生物被膜形成能力及相关特性分析[J]. 南京农业大学学报, 44(05): 918-926. (Deng X L, Sun Y, You X F, et al.2021. Analysis of biofilm formation ability and related characteristics of avian pathogenic Escherichia coli[J]. Journal of Nanjing Agricultural University, 44(05): 918-926.) [4] 付敬敬, 王磊, 张凯, 等. 2019. 响应面优化大肠杆菌生物膜的培养条件[J]. 西北农业学报, 28(08): 1365-1372. (Fu J J, Wang L, Zhang Ket al.2019. Optimization of culture conditions of Escherichia coli biofilm by response surface methodology[J]. Acta Agriculturae Boreali-occidentalis Sinica, 28(08): 1365-1372.) [5] 高翔, 邢小勇, 伏小平, 等. 2018. 牛支原体生物被膜形成优势菌株的筛选及培养条件的优化[J]. 农业生物技术学报, 26(8): 1449-1456. (Gao X, Xing X Y, Fu Xi P, et al.2018. Dominant strain screening of Mycoplasma bovis in biofilm formation and optimization of cultural conditions[J]. Journal of Agricultural Biotechnology, 26(8): 1449-1456.) [6] 胡剑刚. 2022. 禽致病性大肠杆菌生物被膜基因的筛选鉴定及YbgD菌毛致病机制研究[D]. 博士学位论文, 安徽农业大学, 导师: 祁克宗, pp. 44-45. (Hu J G.2022. Screening and identification of biofilm genes and the pathogenic mechanism of YbgD fimbriae in avain pathogenic Escherichia coli[D]. Thesis for Ph. D., Anhui Agricaltural University, Supervisor: Qi K Z, pp. 44-45.) [7] 季君珂, 宓晓雨, 程宇, 等. 2022. 猪肉源大肠杆菌分离鉴定及其生物被膜形成[J]. 肉类研究, 36(11): 1-8. (Ji J K, Mi X Y, Cheng Y, et al.2022. Isolation, identifification and biofifilm formation ability of Escherichia coli from pork[J]. Meat Research, 36(11): 1-8.) [8] 李宇涵. 2020. 牦牛和藏猪源大肠杆菌生物被膜形成能力、耐药基因及毒力基因检测[D]. 硕士学位论文, 西南民族大学, 导师: 陈朝喜, pp. 36-38. (Li Y H.2020. Detection of biofilm formation ability, drug resistance genes and virulence genes of yak-derived and Tibetan pig-derived Escherichia coli[D]. Thesis for M.S., Southwest Minzu University, Supervisor: Chen C X, pp. 36-38.) [9] 芮亚培, 李家奎, 邱刚. 2015. 西藏牦牛大肠杆菌耐药性调查[J]. 中国兽医学报. 35(10): 1610-1613. (Su Y P, Li J K, Qiu G.2015. Investigation of antimicrobial resistance in Escherichia coli from Tibetan yaks[J]. Chinese Journal of Veterinary Science, 35(10): 1610-1613.) [10] 陶梦珂, 赵恒, 石晴晴等. 2023. 浮游态与生物被膜态鸡源大肠杆菌耐药性及功能性差异研究[J]. 中国兽医学报. (10): 1-8. (Tao M K, Zhao H, Shi Q Q et al. 2023. Investigation of drug resistance and functional difference between planktonic and biofilm forms of Escherichia coli in chicken[J]. Chinese Journal of Veterinary Science, (10): 1-8. [11] 汪小强, 姜文腾, 韩照清, 等. 2015. 口服凝胶剂治疗犊牦牛腹泻的临床疗效观察和血清生化指标变化[J]. 中国兽医学报, 35(10): 1674-1675. (Wang X Q, Jiang W T, Han Z Q, et al.2015. Efficacy of oral gels and serum biochemical parameters change in diarrheal calves of yak[J]. Chinese Journal of Veterinary Science, 35(10): 1674-1675.) [12] Costerton J W, Stewart P S, Greenberg E P.1999. Bacterial biofilms: A common cause of persistent infections[J]. Science, 284(5418): 1318-1322. [13] Hu J, Lv X, Niu X, et al.2022. Effect of nutritional and environmental conditions on biofilm formation of avian pathogenic Escherichia coli[J]. Journal of Applied Microbiology, 132(6): 4236-4251. [14] Kumar A, Alam A, Rani M, et al.2017. Biofilms: Survival and defense strategy for pathogens[J]. International Journal of Medical Microbiology, 307(8): 481-489. [15] Lin J, Huang S, Zhang Q.2002. Outer membrane proteins: Key players for bacterial adaptation in host niches[J]. Microbes and Infection, 4(3): 325-331. [16] Mc Dougald D, Rice SA, Barraud N, et al.2011. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal[J]. Nature Reviews Microbiology, 10(1): 39-50. [17] Mittal S, Sharma M, Chaudhary U.2015. Biofilm and multidrug resistance in uropathogenic Escherichia coli[J]. Pathogens and Global Health, 109(1): 26-29. [18] O'Toole G, Kaplan H B, Kolter R.2000. Biofilm formation as microbial development[J]. Annual Review of Microbiology, 54: 49-79. [19] Rumbaugh K P, Sauer K.2020. Biofilm dispersion[J]. Nature Reviews Microbiology, 18(10): 571-586. [20] Roy R, Tiwari M, Donelli G, et al.2018. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action[J]. Virulence, 9(1): 522-554. [21] Rehman M, Zhang H, Wang Y, et al.2017. Experimental mouse lethality of Escherichia coli strains isolated from free ranging Tibetan yaks[J]. Microbial Pathogenesis, 109: 15-19. [22] Skyberg J A, Siek K E, Doetkott C, et al.2007. Biofilm formation by avian Escherichia coli in relation to media, source and phylogeny[J]. Journal of Applied Microbiology, 102(2): 548-554. [23] Villaseor J C, Loosdrecht M, Picioreanu C, et al.2000. Influence of different substrates on the formation of biofilms in biofilm airlift suspension reactor[J]. Water Science and Technology, 41(4-5): 323-330.