Antibacterial Effect of Bacillus velezensis YFB3-1 on Phytophthora capsici and Its Antibacterial Substances
MU Xiao-Qing1, LU Yao-Xiong1,2,*, DAI Liang-Ying1, HUANG Guo-Lin3, CHEN Wei4, ZHANG Ju-Ye4, WEI Chen-Xi4
1 College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; 2 Institute of Agri-environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; 3 Horticultural Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; 4 College of horticulture, Hunan Agricultural University, Changsha 410128, China
Abstract:Pepper phytophthora blight is a soil-borne disease caused by Phytophthora capsic, which causes devastating losses of pepper (Capsicum annuum) and seriously threatens the sustainable development of pepper industry in China. In order to obtain a safe, efficient and effective biocontrol agent for the prevention of pepper phytophthora blight, a strain of Bacillus velezensis YFB3-1 isolated and identified from the intestinal bacteria of earthworms (Eisenia foetida) was selected as a biocontrol strain, and Phytophthora capsici was used as the target strain. The antibacterial effects of different types of Bacillus on P. capsici were compared by plate confrontation method, and the antibacterial effects of YFB3-1 on different soil-borne pathogenic fungi of pepper were compared, and the main antibacterial secondary metabolites and biocontrol mechanisms were analyzed. The antibacterial test showed that B. velezensis YFB3-1 had the best inhibitory effect on P. capsici, and the inhibition rate was 85.21%, which was 19.8% higher than that of B. subtilis GCK5-1. It had good antibacterial effect on different soil-borne pathogenic fungi of pepper, and had the characteristics of broad-spectrum resistance to soil-borne pathogenic fungi of pepper. Microscopic examination showed that B. velezensis YFB3-1 could lead to abnormal mycelial growth, multi-branching or disordered branches, resulting in distortion and enlargement of mycelial cells to varying degrees, and even cell wall rupture. The results of liquid chromatography tandem mass spectrometry (LC-MS) targeted metabolomics showed that the main lipopeptide compounds in the fermentation broth of B. velezensis YFB3-1 were surfactin and fengycin, which reached the highest content at 3 d of fermentation, which were 1.19×10-3 and 1.14×10-3 mg/mL, respectively.This study provides an excellent biocontrol strain for the green prevention and control of pepper blight, and provides a reference for further excavation and utilization of secondary metabolites of B. velezensis.
[1] 程睿君, 原晨虹, 成巨龙, 等. 2019. 一株抗辣椒疫霉的根际细菌CRJ-9的筛选、鉴定及防治效果研究[J]. 河北农业大学学报, 42(1): 83-89. (Chen R J, Yuan C H, Cheng J L, et al.2019. Screening, identification and control efficacy of rhizosphere bacterial CRJ-9 against Phytophthora capsic[J]. Journal of Hebei Agricultural University, 42(1): 83-89.) [2] 郭庆港, 刘高鸽, 陈秀叶, 等. 2022. 枯草芽胞杆菌HMB19198菌株抑菌物质的鉴定及其对番茄灰霉病的防治[J]. 植物病理学报, 52(02): 247-255. (Guo Q G, Liu G G, Chen X Y, et al.2022. Identification of antifungal compounds of Bacillus subtilis HMB19198 and their biocontrol efficacy against tomato gray mold[J]. Acta Phytopathol Sinica, 52(02): 247-255.) [3] 李伟山, 纠敏, 周冬梅, 等. 2022. 寡雄腐霉GAQ1对辣椒疫病的防效及对辣椒的促生作用[J]. 植物保护学报, 49(03): 956-965. (Li W S, Jiu M, Zhou D M, et al.2022. Biological control and growth-promotion effects of mycoparasitic fungus Pythium oligandrum GAQ1 against phytophthora blight in pepper[J]. Journal of Plant Protection, 49(03): 956-965.) [4] 刘雪娇, 李红亚, 李术娜, 等. 2019. 贝莱斯芽胞杆菌3A3-15生防和促生机制[J]. 河北大学学报: 自然科学版, 39(3): 302-310. (Liu X J, Li H Y, Li S N, et al.2019. Biocontrol and growth promotion mechanisms of Bacillus velezensis 3A3-15[J]. Journal of Hebei University (Natural Science Edition), 39(3): 302-310.) [5] 鲁耀雄. 2021. 蚯蚓及其肠道细菌Bacillus velezensis YFB3-1 对百合枯萎病的防治效果及机制研究[D]. 博士学位论文, 湖南农业大学, 导师: 戴良英, pp. 56-68. (Lu Y X.2021. Studies on the control effect and mechanism of earthworms and its intestinal bacteria Bacillus velezensis YFB3-1 to lily Fusarium oxysporum wilt[D]. Thesis for Ph.D., Hunan Agricultural University, Supervisor: Dai L Y, pp. 56-68.) [6] 卯婷婷, 陶刚, 赵兴丽, 等. 2020. 4种微生物菌剂对辣椒主要病害的生物防治作用[J]. 中国生物防治学报, 36(02): 258-264. (Mao T T, Tao G, Zhao X L, et al.2020. Biological control of four kinds of microbial preparation sagainst main diseases of pepper[J]. Chinese Journal of Biological Control, 36(02): 258-264.) [7] 牛世全, 李静, 张雪莹, 等. 2021. 一株抗黄芪根腐病芽胞杆菌的筛选、鉴定及抑菌物质的初步研究[J]. 西北师范大学学报(自然科学版), 57(02): 79-86. (Niu S Q, Li J, Zhang X Y, et al.2021. Screening and identification of Bacillus subtilis against root rot disease of Astragalus membranaceus and preliminary study on the antibacterial substance[J]. Journal of Northwest Normal University (Natural Science), 57(02): 79-86.) [8] 钱荣, 续晓琪, 许宗奇, 等. 2022. 枯草芽胞杆菌KC-WQ发酵液中抗菌脂肽的分离鉴定及发酵条件优化[J]. 食品工业科技, 43(15): 123-131. (Qian R, Xu X Q, Xu Z Q, et al.2022. Isolation and identification of antibacterial lipopeptides from Bacillus subtilis KC-WQ fermentation broth and optimization of fermentation conditions[J]. Science and Technology of Food Industry, 43(15): 123-131.) [9] 乔欣蕾, 凡雪蕊, 霍晓毅, 等. 2021. 枯草芽胞杆菌拮抗尖胞镰刀菌的抑菌物质分析[J]. 农业生物技术学报, 29(10): 1999-2007. (Qiao X L, Fan X R, Huo X Y, et al.2021. Analysis of antifungal substances produced by Bacillus subtilis isolate against Fusarium oxysporum[J]. Journal of Agricultural Biotechnology, 29(10): 1999-2007.) [10] 邱德文. 2013. 生物农药研究进展与未来展望[J]. 植物保护, 39(5): 81-89. (Qiu D W.2013. Research progress and prospect of bio-pesticides[J]. Plant Protection, 39(5): 81-89.) [11] 邵天蔚, 张晓云, 丁万隆, 等. 2018. 三株甲基营养型芽胞杆菌抑菌活性物质初探[J]. 中国现代中药, 20(2): 189-194. (Shao T W, Zhang X Y, Ding W L, et al.2018. Preliminary analysis of active substances from three Bacillus methylotrophicus strains[J]. Modern Chinese Medicine, 20(2): 189-194.) [12] 苏荣存. 2012. 嫁接栽培对辣椒产量和抗病性的影响[J]. 北方园艺, (1): 43-44. (Su R C. 2012. Effect of grafting cultivation on pepper's yield and disease resistance[J]. North Horticulture, (1): 43-44.) [13] 陶永梅, 潘洪吉, 黄健, 等. 2019. 新型生防微生物因子贝莱斯芽胞杆菌(Bacillus velezensis)的研究与应用[J]. 中国植保导刊, 39(9): 26-33. (Tao Y M, Pan H J, Huang J, et al.2019. Research and application of a novel bio-control microbial factor Bacillus velezensis[J]. China Plant Protection, 39(9): 26-33.) [14] 王慧颖. 2021. 辣椒疫病的诊断与防治[J]. 农村.农业.农民(B版), (06): 63-64. (Wang H Y.2021. Diagnosis and control of pepper blight[J]. Rural. Agriculture. Farmers (B edition), (06): 63-64.) [15] 王蕊, 胡辉帆, 陈文兰, 等. 2020. 一株甲基营养型芽胞杆菌抑菌活性物质鉴定[J]. 中国调味品, 45(09): 5-10. (Wang R, Hu H F, Chen W L, et al.2020. Identification of antibacterial active substances of a strain of Bacillus methylotrophicus[J]. China Condiment, 45(09): 5-10.) [16] 王新生, 卢惠芝, 周俊. 2009. 5种杀菌剂防治辣椒疫病田间药效试验[J]. 农药科学与管理, 30(4): 34-35. (Wang X S, Lu H Z, Zhou J.2009. Field efficacy test of five fungicides against pepper blight[J]. Pesticide Science and Administration, 30(4): 34-35.) [17] 吴石平, 袁洁, 杨学辉, 等. 2009. 几种杀菌剂对辣椒疫病的抑菌活性研究[J]. 安徽农业科学, 37(1): 211-212. (Wu S P, Yuan J, Yang X H, et al.2009. Study on antibacterial activity of several fungicides on Phytophthora capsici Leon[J]. Journal of Anhui Agricultural Sciences, 37(1): 211-212.) [18] 吴艳清, 王游游, 王畅, 等. 2018. 枯草芽胞杆菌WL2脂肽粗提物对致病疫霉的抑制作用及其分离鉴定[J]. 河北大学学报: 自然科学版, 38(6): 632-639. (Wu Y Q, Wang Y Y, Wang C, et al.2018. Inhibitory effect of lipopeptide crude extract produced by Bacillus subtilis WL2 on Phytophthora infestans and its isolation and identification[J]. Journal of Hebei University (Natural Science Edition), 38(6): 632-639.) [19] 席亚东, 陈国华, 谢丙炎, 等. 2016. 辣椒疫霉菌全球传播与危害及生物学特性研究进展[J]. 北方园艺, (11): 199-203. (Xi Y D, Chen G H, Xie B Y, et al. 2016. Research progress of global spread, damage and biological characteristics of Phytophthora capsici[J]. North Horticulture, (11): 199-203.) [20] 薛春生, 何瑞玒, 肖淑芹, 等. 2017. 辽宁省辣椒疫霉菌生理小种的生物学特性及生物制剂对辣椒疫病的防效[J]. 植物保护学报, 44(4): 650-656. (Xue C S, He R H, Xiao S Q, et al.2017. Biological characteristics of physiological race in soilborne plant pathogen Phytophthora capsici and biological agents control on pepper blight in Liaoning province[J]. Journal of Plant Protection, 44(4): 650-656.) [21] 徐友宣, 彭师奇. 1997. 蛋白质及多肽的液相色谱-电喷雾离子化质谱研究进展[J]. 药学报, (10): 76-80. (Xu Y X, Peng S Q.1997. Research progress of liquid chromatography-electrospray ionization mass spectrometry for proteins and peptides[J]. Acta Pharmaceutica Sinica, (10): 76-80.) [22] 杨茹薇, 秦勇, 吴慧, 等. 2010. 辣椒嫁接抗疫病效果研究[J]. 新疆农业大学学报, 33(1): 27-30. (Yang R W, Qin Y, Wu H, et al.2010. Research on the effect of grafting techniques of the resistance to Phytophthora capsici Leon in pepper[J]. Journal of Xinjiang Agricultural University, 33(1): 27-30.) [23] 杨叔青, 胡栓红, 杨志刚, 等. 2015. 不同地区辣椒疫霉菌生理小种的鉴定和生物学特性的研究[J]. 华北农学报, 30(2): 104-109. (Yang S Q, Hu S H, Yang Z G, et al.2015. The study on the physiological race type and biological characteristics of Phytophthora capsici collected from different regions[J]. Acta Agriculturae Boreal-Sinica, 30(2): 104-109.) [24] 杨定祥, 林巧玲, 卢乃会, 等. 2018. 拮抗辣椒疫霉菌海洋细菌菌株SH-27的筛选鉴定及其防病促生作用[J]. 微生物学通报, 45(1): 54-63. (Yang D X, Lin Q L, Lu N H, et al.2018. Screening and identification of a marine bacterium strain SH-27 against Phytophthora capsici causing pepper phytophthora blight[J]. Microbiology China, 45(1): 54-63.) [25] 叶旻硕, 马艳, 黄有军. 2020. 生防芽胞杆菌防控辣椒疫病研究进展[J]. 中国农学通报, 36(15): 123-129. (Ye M S, Ma Y, Huang Y J.2020. The control of pepper blight by Bacillus spp.: Research progress[J]. Chinese Agricultural Science Bulletin, 36(15): 123-129.) [26] 曾欣, 张亚惠, 迟惠荣, 等. 2019. 温郁金内生拮抗细菌B-11的分离及其抑菌活性[J]. 微生物学通报, 46(5): 1018-1029. (Zeng X, Zhang Y H, Chi H R, et al.2019. Antimicrobial activity of endophytic bacterium strain B-11 isolated from Curcuma wenyujin[J]. Microbiology China, 46(5): 1018-1029.) [27] 张德锋, 高艳侠, 王亚军, 等. 2020. 贝莱斯芽胞杆菌的分类、拮抗功能及其应用研究进展[J]. 微生物学通报, 47(11): 3634-3649. (Zhang D F, Gao Y X, WangY J, et al.2020. Advances in taxonomy, antagonistic function and application of Bacillus velezensis[J]. Microbiology China, 47(11): 3634-3649.) [28] 张德珍, 迟文娟, 李婷婷, 等. 2021. 辣椒疫病生防菌的防病促生作用及其鉴定[J]. 山东农业科学, 53(10): 91-96. (Zhang D Z, Chi W J, Li T T, et al.2021. Effects of biocontrol bacteria against pepper Phytophthora blighton disease control and growth promotion and its identification[J]. Shandong Agricultural Sciences, 53(10): 91-96.) [29] 张锐, 尚伟, 韦新宇, 等. 2022. 辣椒疫病的发生及疫病抗性连锁标记适用性评价[J]. 分子植物育种, 20(10): 3285-3293. (Zhang R, Shang W, Wei X Y, et al.2022. Occurrence of pepper Phythophtora capsici and the applicability evaluation of linkage markers for disease resistance[J]. Molecular Plant Breeding, 20(10): 3285-3293.) [30] 张世才, 熊艳, 黄任中, 等. 2015. 重庆地区辣椒疫霉菌的分离培养及生理小种鉴定[J]. 植物保护, 41(3): 183-187. (Zhang S C, Xiong Y, Huang R Z, et al.2015. Isolation and cultivation of Phytophthora capsici and identification of physiological race in Chongqing[J]. Plant Protection, 41(3): 183-187.) [31] 周瑚, 邹秋霞, 胡玲, 等. 2019. 特基拉芽胞杆菌JN-369的分离鉴定及其抑菌物质分析[J]. 农药学学报, 21(01): 52-58. (Zhou H, Zhou Q X, Hu L, et al.2019. Isolation and identification of Bacillus tequilensis JN-369 and antimicrobial substance analysis[J]. Chinese Journal of Pesticide Science, 21(01): 52-58.) [32] 周涛, 罗路云, 陈红松, 等. 2017. 辣椒疫病罹病植株根际土壤细菌群落多样性分析[J]. 南方农业学报, 48(6): 1014-1018. (Zhou T, Luo L Y, Chen H S, et al.2017. Comparison on bacterial community diversity in rhizosphere soil of peppers with phytophthora blight[J]. Journal of Southern Agriculture, 48(6): 1014-1018.) [33] 邹学校, 朱凡. 2022. 辣椒的起源、进化与栽培历史[J]. 园艺学报, 49(06): 1371-1381. (Zou X X, Zhu F.2022. Origin, evolution and cultivation history of the pepper[J]. Acta Horticulturae Sinica, 49(06): 1371-1381.) [34] Asma K A, Nicolas S, Marc O, et al.2020. Characterization of new fengycin cyclic lipopeptide variants produced by Bacillus amyloliquefaciens (ET) originating from a salt lake of eastern algeria[J]. Current microbiology, 77(3): 443-451. [35] Baysal O, Lai D, Xu H H, et al.2013. A proteomic approach provides new insights into the control of soil-borne plant pathogens by Bacillus species[J]. PLOS ONE, 8: 1-12. [36] Chowdhury S P, Uhl J, Grosch R, et al.2015. Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani[J]. Molecular Plant-Microbe Interactions, 28(9): 984-995. [37] Gao X Y, Liu Y, Miao L L, et al.2017. Characterization and mechanism of Aeromonas salmonicida activity of amarine probiotic strain, Bacillus velezensis V4[J]. Applied Microbiology and Biotechnology, 101(9): 3759-3768. [38] Heerklotz H, Seelig J.2007. Leakage and lysis of lipid membranes induced by the lipopeptide surfactin[J]. European Biophysics Journal, 36(4/5): 305-314. [39] Hermosa R, Rubio B, Caedoza R E, et al.2013. The contribution of trichoderma to balancing the costs of plant growth and defense[J]. International Microbiology, 16: 69-80. [40] Hermosa R, Viterbo A, Chet I, et al.2012. Plant-beneficial effects of trichoderma and of its genes[J]. Microbiology, 158(1): 17-25. [41] Jang Y, Yang E, Cho M, et al.2012. Effect of grafting on growth and incidence of phytophthora blight and bacterial wilt of pepper (Capsicum annuum L.)[J]. Horticulture Environment & Biotechnology, 53(1): 9-19. [42] Kim K D, Nemec S, Musson G.1997. Effects of composts and soil amendments on soil microflora and phytophthora root and crown rot of bell pepper[J]. Crop Protection, 16(2): 165-172. [43] Louws F J, Rivard C L, Kubota C.2010. Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds[J]. Scientia Horticulturae, 127(2): 127-146. [44] Liu Y, Teng K, Wang T, et al.2020. Antimicrobial Bacillus velezensis HC6: Production of three kinds of lipopeptides and biocontrol potential in maize[J]. Journal of Applied Microbiology, 128(1): 242-254. [45] Kanjanamaneesathian M, Wiwattanapatapee R, Rotniam W, et al.2013. Application of a suspension concentrate formulation of Bacillus velezensis to control root rot of hydroponically-grown[J]. New Zealand Plant Protection, 66: 229-234. [46] Shafi J, Tian H, Ji M S.2017. Bacillus species as versatile weapons for plant pathogens: A review[J]. Biotechnology & Biotechnological Equipment, 31(3): 446-459. [47] Zhang B, Dong C J, Shang Q M, et al.2013. New insights into membrane-active action in plasma membrane of fungal hyphae by the lipopeptide antibiotic bacillomycin L[J]. Biochimicaet Biophysica Acta (BBA)-Biomembranes, 1828(9): 2230-2237.