Evaluation of Ovarian Development and Comparative Transcription Study of Channel Catfish (Ictalurus punctatus) Pseudofemale
XU Si-Qi1, ZHANG Shi-Yong1,2,*, WANG Ming-Hua1,2, LIU Hong-Yan1, ZHONG Li-Qiang1,2, CHEN Xiao-Hui1,2,*
1 Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China;
2 The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
Abstract:The cultivation of XY type pseudo female fish is a necessary step in obtaining faster growing all male strains of channel catfish (Ictalurus punctatus). In order to investigate the ovarian development at the period of adult and transcriptomic expression during sex differentiation after XY female channel catfish was induced by 17β-estradiol. The ovarian development and oocyte development of channel catfish were compared and analyzed by histological and anatomical methods with positive genetic sex identification, and the gonad development of XY pseudo-female channel catfish at the 3-year-old (500~2000 g) was evaluated by statistical gonad index. Transcriptomic sequencing was performed on XY pseudo-female channel catfish and normal female channel catfish at the age of 60 d after hatching. The gonad index of the 3-year-old XY female channel catfish was significantly different, the ovary of the large size XY females and the normal females was larger, with long sacs, densely filled with blood vessels and full of yolk. Oocytes in vitellogenic stage were mainly accompanied by cortical follicular stage and a little number of primary growth oocytes. Transcriptome sequencing revealed 11 288 differentially expressed genes between the ovaries of 60 d after hatching XY type pseudo female fish and normal female fish, enriched in multiple immune related biological processes and signaling pathways. According to GO enrichment and KEGG signaling pathway, among the top 30 GO enriched pathways, the female gamete generation pathway was screened, in which 32 genes showed differential expression, with down regulation of progesterone receptor (pgr) gene and androgen receptor (ar) gene expression. The research provides reproductive biology techniques and theoretical basis for sex control breeding of channel catfish.
[1] 黄旭雄, 温文, 危立坤, 等. 2014. 闽东海域银鲳亲鱼性腺发育后期脂类及脂肪酸蓄积特点[J]. 水产学报, 38(1): 99-108.
(Huang X X, Wen W, Wei L K, et al.2014. Characteristics of lipid and fatty acid accumulation in wild-caught broodstocks of Pampus argenteus from Mindong seazone[J]. Journal of Fisheries of China, 38(1): 99-108.)
[2] 李斌, 赵航. 2022. 性激素在先天免疫中的作用[J]. 医学理论与实践, 35(14): 2369-2371.
(Li B, Zhao H.2022. The role of sex hormones in innate immunity[J]. The Journal of Medical Theory and Practice, 35(14): 2369-2371.)
[3] 刘志伟. 2012. GDF9与BMP15在异育银鲫卵母细胞发育过程中的作用初探[D]. 硕士学位论文, 上海海洋大学, 导师: 冷向军, pp. 44-46.
(Liu Z W.2012. Effects of GDF9 and BMP15 during the developmental process of oocyte of gibel carp (Carassius auratus gibelio)[D]. Thesis for M.S., Shanghai Ocean University, Supervisor: Leng X J, pp. 44-46.)
[4] 马雪云, 沈吟, 邢怡桥. 2018. 新型雌激素受体GPER1作用通路的研究进展[J]. 武汉大学学报(医学版), 39(4): 683-688.
(Ma X Y, Shen Y, Xing Y Q.2018. Advances in pathway researches of G protein coupled estrogen receptor1 as a new estrogen receptor[J]. Medical Journal of Wuhan University, 39(4): 683-688.)
[5] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2022. 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2022, pp: 25.
(Fisheries and Fisheries Administration, Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Station, China Society of Fisheries. 2022 China Fishery Statistical Yearbook[M]. China Agriculture Press, Beijing, China, 2022, pp: 25.)
[6] 山谷. 2022. 杂交三倍体泥鳅早期性腺发育的分子阻抑机制[D].硕士学位论文, 大连海洋大学, 导师: 周贺, pp: 31-41.
(Shan G.2022. Molecular inhibition mechanism of early gonadal development in hybrid triploid (Misgurnus anguillicaudatus)[D]. Thesis for M.S., Dalian Ocean University, Supervisor: Zhou H, pp: 31-41.)
[7] 宋维, 臧娜, 冯艺璇, 等. 2023. 阿根廷滑柔鱼雌性个体组织脂肪积累及对生殖能量的贡献研究[J]. 南方水产科学, 19(1): 39-47.
(Song W, Zang N, Feng Y Xet al.2023. Study on lipid accumulation and contribution to reproductive energy in female Illex argentinus[J]. South China Fisheries Science, 19(1): 39-47.)
[8] 陶彬彬, 胡炜. 2022. 鱼类性别控制育种研究进展[J]. 中国农业科技导报, 24(2): 1-10.
(Tao B, Hu W.2022. Research progress on sex control breeding of fish[J]. Journal of Agricultural Science and Technology, 24(2): 1-10.)
[9] 徐思琪, 张世勇, 段永强, 等. 2022a. 17β-雌二醇诱导斑点叉尾鮰雌性化研究[J]. 水生生物学报, 46(11): 1668-1674.
(Xu S Q, Zhang S Y, Duan Y Q, et al.2022. Feminization of channel catfish induced by 17β-estradiol[J]. Acta Hydrobiological Sinica, 46(11): 1668-1674.)
[10] 徐思琪,张世勇,张文平, 等. 2022b. 温度诱导斑点叉尾鮰雌性化研究[J].福建农业学报, 37(06): 741-747.
(Xu S Q, Zhang S Y, Zhang W Pet al.2022. Temperature-induced feminization of channel catfish[J]. Fujian Journal of Agricultural Sciences, 37(6): 741-74.)
[11] 薛艳会. 2021. 南黄海和东海中南部小黄鱼生殖特征与策略研究[D]. 硕士学位论文, 上海海洋大学, 导师: 程家骅, pp. 52-53.
(Xue Y H.Research on the reproductive characteristics and strategies of small yellow croaker in the south yellow sea and the central south east China sea[D]. Thesis for M.S., Shanghai Ocean University, Supervisor: Cheng J Y, pp. 52-53.)
[12] 张俊杰, 胡琼, 管潇萌, 等. 2018. 白斑狗鱼雌性化诱导和雌雄同体现象[J]. 水产学报, 42(4): 557-564.
(Zhang J J, Hu Q, Guan X M, et al.2018. Feminization induction and hermaphroditism of northern pike (Esox lucius)[J]. Journal of Fisheries of China, 42(4): 557-564.)
[13] 张世勇, 刘洪岩, 王江, 等. 2021. 基于微卫星标记的斑点叉尾鮰家系鉴定技术及应用[J].水生生物学报, 45(02): 327-333.
(Zhang S, Liu H, Wang J, et al.2021. Establishment and application of pedigree identification technique for channel catfish based on microsatellite markers[J]. Acta Hydrobiological Sinica, 45(02): 327-333.)
[14] 赵庆国, 卢柏松, 黄培堂. 2005. FANCL在原始生殖细胞的形成和范可尼贫血中的功能研究[J]. 遗传学报, 32(9): 993-1000.
(Zhao Q G, Lu B S, Huang P T.2005. Functions of FANCL in primordial germ cell formation and Fanconi Anemia[J]. Journal of Genetics and Genomics, 32(9): 993-1000.)
[15] 周海. 2018. 脂肪在中华鳄雌鱼性腺发育过程中的作用及其相关机制研究[D]. 硕士学位论文, 华中农业大学, 导师: 谭青松, pp. 27-35.
(Zhou H.2018. Studies on the function and the related mechanism of lipid on gonadal development of female Chinese sturgeon (Acipenser sinensis)[D]. Thesis for M.S., HuaZhong Agricultural University, Supervisor: Tan Q S, pp. 27-35.)
[16] 周家辉, 杜金星, 姜鹏, 等. 2021. 17α-甲基睾酮对大口黑鲈生长及性腺发育的影[J].中国水产科学, 28(9): 1109-1117.
(Zhou J H, Du J X, Jiang P, et al.Effects of 17α-methyltestosterone on growth and sex differentiation in largemouth bass(Micropterus salmoides)[J]. Journal of Fishery Sciences of China, 28(9): 1109-1117.)
[17] Ahmadifard M, Kajbafzadeh A, Panjeh S, et al.2019. Molecular investigation of mutations in androgen receptor and 5-alpha-reductase-2 genes in 46, XY disorders of sex development with normal testicular development[J]. Andrologia, 51(5): e13250.
[18] Arck P, Hansen P J, Mulac Jericevic B, et al.2007. Progesterone during pregnancy: Endocrine-immune cross talk in mammalian species and the role of stress[J].American Journal of Reproductive Immunology, 58(3): 268-279.
[19] Atino R, Davis K B, Schooore J E, et al.1996. Sex differentiation of channel catfish gonads: Normal development and effects of temperature[J]. The Journal of Experimental Zoology, 276(3): 209-218.
[20] Clelland E, Peng C.2009. Endocrine/paracrine control of zebrafish ovarian development[J]. Molecular and Cellular Endocrinology, 312(1-2): 42-52.
[21] Hernandez-Rauda R, Aldegunde M.2002. Effects of acute 17alpha-methyltestosterone, acute 17beta-estradiol, and chronic 17alpha-methyltestosterone on dopamine, norepinephrine and serotonin levels in the pituitary, hypothalamus and telencephalon of rainbow trout (Oncorhynchus mykiss)[J]. Journal of Comparative Physiology B. 172(8): 659-667.
[22] Jacobsen B M,Schittone S A,Richer J K,et al.2005. Progesterone-independent effects of human progesterone receptors (PGRs) in estrogen receptor-positive breast cancer: PR isoform-specific gene regulation and tumor biology[J]. Molecular Endocrinology, 19(3): 574-587.
[23] Korkmaz C, Ay Ö, Dönmez A E, et al.2022. Effects of lead on reproduction physiology and liver and gonad histology of male Cyprinus carpio[J]. Bulletin of Environmental Contamination and Toxicology. 108(4): 685-693.
[24] Lim S L, Qu Z P, Kortschak R D, et al.2015. HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse[J]. PLOS Genetics. 11(10): e1005620.
[25] Lin X, Zhou D, Zhang X, et al.2021. A First Insight into the Gonad Transcriptome of Hong Kong catfish (Clarias fuscus)[J]. Animals, 11(1131): 1131.
[26] Matthews J L, Murphy J, Nasiadka A, et al.2022. A simple method for inducing masculinization of zebrafish stocks using 17α-methyltestosterone[J]. Zebrafish, 19(6): 241-244.
[27] Peng C, Clelland E, Tan Q.2009. Potential role of bone morphogenetic protein-15 in zebrafish follicle development and oocyte maturation[J]. Comparative Biochemistry and Physiology A, 153(1): 83-87.
[28] Revankar C M, Cimino D F, Sklar L, et al.2005. A transmembrane intracellular estrogen receptor mediates rapid cell signaling[J]. Science, 307(5715): 1625-1630.
[29] Shelley L K, Osachoff H L, Van Aggelen G C, et al.2013. Alteration of immune function endpoints and differential expression of estrogen receptor isoforms in leukocytes from 17β-estradiol exposed rainbow trout (Oncorhynchus mykiss)[J]. General and Comparative Endocrinology, 180: 24-32.
[30] Vasconsuelo A, Pronsato L, Ronda A C, et al.2011. Role of 17β-estradiol and testosterone in apoptosis[J]. Steroids, 76(12): 1223-1231.
[31] Wu Y, Yao N, Feng Y, et al.2019. Identification and characterization of sexual dimorphism?linked gene expression profile in hepatocellular carcinoma[J]. Oncology Reports, 2019, 42(3): 937-952.
[32] Xiong Y, Wang S, Gui J F, et al.2020. Artificially induced sex-reversal leads to transition from genetic to temperature-dependent sex determination in fish species[J]. Science China Life Sciences, 63(1): 157-159.
[33] Xu S, Zhang S, Zhang W, et al.2022. Genome-wide identification, phylogeny, and expression profile of the Dmrt (doublesex and Mab-3 related transcription factor) gene family in channel catfish (Ictalurus punctatus)[J]. Frontiers in Genetics, 13: 891204.
[34] Zhang S Y, Zhang X, Chen X H, et al.2019. Construction of a high-density linkage map and QTL fine mapping for growth and sex-related traits in channel catfish (Ictalurus punctatus)[J]. Frontiers in Genetics, 10: 251.