|
|
Genome-wide Identification and Expression Analysis of bZIP Family Genes in Botrytis cinerea |
LI Bai1,2,3, ZHANG Zi-Yan1, ZHANG Qiang1,2, CAO Hong-Zhe1,2, ZANG Jin-Ping1,2, ZHANG Kang1,2,3, XING Ji-Hong1,2,3,*, DONG Jin-Gao2,3,4,* |
1 College of Life Sciences, Hebei Agricultural University, Baoding 071000, China; 2 Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding 071000, China; 3 State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071000, China; 4 College of Plant Protection, Hebei Agricultural University, Baoding 071000, China |
|
|
Abstract The bZIP (basic leucine zipper, bZIP) transcription factors are widely present in phytopathogenic fungi, and play an important regulatory role in the morphogenesis and infection of pathogens. Systematic studies of the bZIP transcription factor family in Botrytis cinerea have been rarely reported. In this study, the bZIP family genes in Botrytis cinerea were genome-wide identified, the protein physicochemical properties, phylogenetic evolution, conserved domain, and the expression pattern in pathogen conidia during development and infection period were analyzed. Meanwhile, qPCR was used to detect the expression of bZIP family genes after NaCl and H2O2 treatment. The results showed that there were 16 bZIP family genes identified from Botrytis cinerea genome, which were divided into 4 subfamilies by phylogenetic analysis. All bZIP family genes of Botrytis cinerea contained the typical BRLZ domain of bZIP family. Some genes showed high expression levels at different development of conidia and infection stages of Botrytis cinerea. All bZIP family genes of Botrytis cinerea were significantly down-regulated after NaCl and H2O2 treatment. These results indicated that bZIP family genes of Botrytis cinerea played an important role in the growth and development, infection process and response to salt stress and oxidative stress. This study provides a theoretical basis for further revealing the function and molecular mechanism of bZIP family genes of Botrytis cinerea.
|
Received: 17 June 2021
|
|
Corresponding Authors:
*xingjihong2000@126.com; dongjingao@126.com
|
|
|
|
[1] 陈景源. 2014. 核盘菌bZIP转录因子Ss-Adal的功能研究[D]. 硕士学位论文, 吉林大学, 导师: 潘洪玉, pp.55-61. (Chen J Y.2014. Study on the function of Sclerotinia sclerotiorum bZIP transcription factor SsAdal[D]. Thesis for M.S., Jilin University, Supervisor: Pan H Y, pp. 55-61.) [2] 盖云鹏. 2019. 链格孢菌比较基因组及bZIP转录因子功能研究[D]. 博士学位论文,浙江大学, 导师:李红叶, pp. 44-81. (Gai Y P.2019. Comparative genome of Alternaria alternata and the function of bZIP transcription factor[D]. Thesis for Ph.D., Zhejiang University, Supervisor: Li H Y, pp.44-81.) [3] 陆静. 2012. 大豆疫霉bZIP转录因子PsBZPl的功能研究[D]. 硕士学位论文, 南京农业大学, 导师: 王源超, pp. 31-73. (Lu J.2012. Study on the function of Phytophthora sojae bZIP transcription factor PsBZP1[D]. Thesis for M.S., Nanjing Agricultural University, Supervisor: Wang Y C, pp. 31-73.) [4] 汤蔚. 2015. 非折叠蛋白反应相关基因MoHAC1和MoIRE1在稻瘟病菌生长发育和致病过程中的功能分析[D]. 博士学位论文, 南京农业大学, 导师: 郑小波, 张正光, pp. 4-25. (Tang Wei.2015. Functional analysis of unfolded protein response-related genes MoHAC1 and MoIRE1 in the growth, development and pathogenesis of Magnaporthe grisea[D]. Thesis for Ph.D., Nanjing Agricultural University, Supervisor: Zheng X B, Zhang Z G, pp. 4-25.) [5] 于滔, 王成波, 曹士亮, 等. 2016. 玉米bZIP转录因子的生物信息学分析[J]. 黑龙江农业科学, 4(1): 1002-1007. (Yu T, Wang C B, Cao S L, et al.2016. Bioinformatics analysis of maize bZIP transcription factors[J]. Heilongjiang Agricultural Sciences, 4(1): 1002-1007.) [6] 张金龙. 2015. 稻瘟病菌bZIP转录因子MoGcn4的生物学功能分析及化合物sporothriolide对稻瘟病菌的影响研究[D]. 硕士学位论文, 南京农业大学, 导师: 张正光, pp. 4-7. (Zhang J L.2015. Biological function analysis of the rice blast fungus bZIP transcription factor MoGcn4 and the effect of the compound sporothriolide on the rice blast fungus[D]. Thesis for M.S., Nanjing Agricultural University, Supervisor: Zhang Z G, pp. 4-7.) [7] 张莉林. 2013. 294个稻瘟病菌转录因子基因的敲除和功能分析[D]. 硕士学位论文, 浙江大学, 导师: 卢建平, pp. 5-13. (Zhang L L.2013. Knockout and functional analysis of 294 transcription factor genes of Magnaporthe grisea[D]. Thesis for M.S., Zhejiang University, Superisor: Lu J P, pp. 5-13.) [8] 朱倩. 2014. 4个bZIP转录因子在稻瘟病菌生长发育及致病过程中的功能研究[D]. 硕士学位论文, 南京农业大学, 导师: 郑小波, 张正光, pp. 1-6. (Zhu Q.2014.The function of four bZIP transcription factors in the growth and development of rice blast fungus and the process of disease treatment[D]. Thesis for M.S., Nanjing Agricultural University, Supervisor: Zheng X B, Zhang Z G, pp. 1-6) [9] Guo M, Chen Y, Du Y, et al.2011. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae[J]. PLOS Pathogens, 7(2): e1001302. [10] Heinekamp T, Kuhlmann M, Lenk A, et al.2002. The tobacco bZIP transcription factor BZI-1 binds to G-box elements in the promoters of phenylpropanoid pathway genes in vitro, but it is not involved in their regulation in vivo[J]. Molecular Genetics and Genomics, 267(1): 16-26. [11] Ippolito A, Nigro F.2000. Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables[J]. Crop Protection, 19(8): 715-723. [12] Kumar S, Stecher G, Tamura K, et al.2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 33(7): 1870-1874. [13] Laluk K, Mengiste T.2010. Necrotroph attacks on plants: wanton destruction or covert extortion[J]. The Arabidopsis Book, 12(8): e0136. [14] Lamb P, McKnight S L.1991. Diversity and specificity in transcriptional regulation: the benefits of heterotypic dimerization[J]. Trends in Biochemical Sciences, 16(11): 417-422. [15] Nojima H, Leem S H, Araki H, et al.1994. Hac1: A novel yeast bZIP protein binding to the CRE motif is a multicopy suppressor for cdc10 mutant of Schizosaccharomyces pombe[J]. Nucleic Acids Research, 22(24): 5279-5288. [16] Rosslenbroich H J, Stuebler D.2000. Botrytis cinerea-history of control and novel fungicides for its management[J]. Crop Protection, 19(8-10): 557-561. [17] Sakamoto K, Iwashita K, Yamada O, et al.2009. Aspergillus oryzae atfA controls conidial germination and stress tolerance[J]. Fungal Genetics and Biology, 46(12): 887-897. [18] Singh A, Dhillon N K, Sharma S, et al.2008. Identification and purification of CREB like protein in Candida albicans[J]. Molecular and Cellular Biochemistry, 308(1-2): 237-245. [19] Takhellambam S D, Lalit P S, Ken-Ichi H, et al.2011. GSK-3β/CREB axis mediates IGF-1-induced ECM/adhesion molecule expression, cell cycle progression and monolayer permeability in retinal capillary endothelial cells: Implications for diabetic retinopathy[J]. BBA-Molecular Basis of Disease, 1812(9): 1080-1088. [20] Temme N, Oeser B, Massaroli M, et al.2012. BcAtf1, a global regulator, controls various differentiation processes and phytotoxin production in Botrytis cinerea[J]. Molecular Plant Pathology, 13(7): 704-718. [21] Williamson B, Tudzynski B, Tudzynski P, et al.2010. Botrytis cinerea: The cause of grey mould disease[J]. Molecular Plant Pathology, 8(5): 561-580. [22] Zdobnov E M, Apweiler R.2001. InterProScan-an integration platform for the signature-recognition methods in InterPro[J]. Bioinformatics, 17(9): 847-848. [23] Zhao H, Gou P.2014. Research progress on the pathogenic mechanism of Botrytis cinerea[J]. Biotechnology, 24(1): 100-103. |
[1] |
QIAN Zhen-Feng, GU Shu-Jie, ZHAO Xue-Ting, RAO Xi-Bing, ZENG Dan, SHEN Qing-Qing, ZHANG Rong-Qiong, CHEN Shu-Ying, HE Li-Lian, LI Fu-Sheng. Identification and Cold Stress Expression Analysis of CML Gene Family in Erianthus fulvus Based on Transcriptome[J]. 农业生物技术学报, 2022, 30(5): 885-895. |
|
|
|
|