|
|
Antagonistic Activity and Related Biocontrol Factors Detection of Bacillus subtilis BS193 on Phytophthora capsici |
WANG Rong-Bo1,2, CHEN Shu-Zun1,2, XIAO Xiao-Lu1,2, LI Ben-Jin1,2, LIU Pei-Qing1,2, SHI Ming-Yue1,2, CHEN Qing-He1,*, WENG Qi-Yong1,2,* |
1 Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; 2 Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China |
|
|
Abstract Pepper blight is a devastating soil-borne disease caused by Phytophthora capsici, which occurs generally in pepper (Capsicum annuum) growing areas worldwide, and causes huge economic loss. The antagonistic activity of Bacillus subtilis BS193 was assessed by dual culture test on V8 plates using 6 plant pathogenic oomycetes. The results showed that BS193 greatly inhibited the targeted pathogens with more than 50% inhibition, and showed the best inhibitory effect on Ph. capsici with the rate of 66.7%. When the BS193 cultural filtrates and Ph. capsici were inoculated simultaneously on pepper leaves, 63.50% disease suppression was observed. In pepper seedling inoculation test, the BS193 strain with concentration of 1×108 cfu/mL at 3 d post inoculation of Ph. capsici showed 89.52% pepper blight disease reduction. In addition, BS193 displayed the better potential in promoting plant growth in greenhouse environment. The height, root length, fresh weight and dry weight of pepper seedlings increased by 50.04%, 48.16%, 73.27% and 48.83%, respectively, after 30 d of root irrigation treatment with 20 mL (1×108 cfu/mL) fermentation broth of BS193 strain. The fermentation filtrate of BS193 could inhibit the mycelium growth and lead to a significant increase in mycelial branching, deformity and shrinkage. Meanwhile, 40% fermentation filtrate could significantly inhibit sporangia production, zoospore release and cyst germination with inhibition rate of more than 90%. Further, BS193 were evaluated for biocontrol traits by solid medium and transparent circle detection, and found that BS193 could form the biofilm and exhibited production of protease and cellulase. Overall, the results indicated that B. subtilis BS193 has significant inhibitory activity against Phytophthora pathogens, and the excellent effect of promoting plant growth, which can be considered as a candidate with great development potential for biological control of pepper blight.
|
Received: 12 July 2021
|
|
Corresponding Authors:
*wengqy@faas.cn; qhchen@hainanu.edu.cn
|
|
|
|
[1] 陈羽娇, 余朝阁. 2020. 芽胞杆菌在植物病害防治中的应用及研究进展[J]. 农机使用与维修, 291(11): 39-40. (Chen Y J, Yu C G.2020. Progress on applications and research of Bacillus in preventing and controling plants disease[J]. Agricultural Mechanization Using & Maintenance, 291(11): 39-40.) [2] 程睿君, 原晨虹, 成巨龙, 等. 2019. 一株抗辣椒疫霉的根际细菌CRJ-9的筛选、鉴定及防治效果研究[J]. 河北农业大学学报, 42(01): 83-89. (Cheng R J, Yuan C H, Cheng J L, et al.2019. Screening, identification and control efficacy of rhizosphere bacterial CRJ-9 against Phytophthora capsici[J]. Journal of Hebei Agricultural University, 42(01): 83-89.) [3] 关晓溪, 隋常玲, 李金红, 等. 2020. 生物农药防治辣椒疫病研究进展[J]. 农药, 59(07): 473-485. (Guan X X, Sui C L, Li J H, et al.2020. Research progress on biological pesticides for control of pepper Phytophthora disease[J]. Agrochemicals, 59(07): 473-485.) [4] 胡亚杰, 韦建玉, 卢健, 等. 2019. 枯草芽胞杆菌在农作物生产上的应用研究进展[J]. 作物研究, 33(02): 167-172. ( Hu Y J, Wei J Y, Lu J, et al.2019. Research progress of Bacillus subtilis application in crops production[J]. Crop Research, 33(02): 167-172.) [5] 李丹, 李茸梅, 秦伟英, 等. 2018. 两株解淀粉芽胞杆菌对西瓜枯萎病的防治作用及其相关生防因子检测[J]. 中国生物防治学报, 34(05): 729-737. (Li D, Li R M, Qin W Y, et al.2018. Control effects and related biocontrol factors detection of two Bacillus amyloliquefaciens strains on watermelon Fusarium wilt[J]. Chinese Journal of Biological Control, 34(05): 729-737.) [6] 马佳, 李颖, 胡栋, 等. 2018. 芽胞杆菌生物防治作用机理与应用研究进展[J]. 中国生物防治学报, 34(04): 639-648. (Ma J, Li Y, Hu D, et al.2018. Progress on mechanism and applications of Bacillus as a biocontrol microbe[J]. Chinese Journal of Biological Control, 34(04): 639-648.) [7] 谈泰猛, 黎继烈, 申爱荣, 等. 2017. 辣椒疫病拮抗菌的分离、鉴定及其生防效果[J]. 生态学杂志, 36(04): 988-994. (Tan T M, Li J L, Shen A R, et al.2017. Isolation, identification and biocontrol effect of antagonistic bacteria on Phytophthora capsici[J]. Chinese Journal of Ecology, 36(04): 988-994.) [8] 王欢, 贾田惠, 杨可欣, 等. 2019. 枯草芽胞杆菌8-32对病原真菌的拮抗效应及对植物促生长机制[J]. 农业生物技术学报, 27(05): 908-918. (Wang H, Jia T H, Yang K X, et al.2019. Antagonistic effect on pathogenic fungi and plant growth promoting mechanism of Bacillus subtilis 8-32[J]. Journal of Agricultural Biotechnology, 27(05): 908-918.) [9] 王立浩, 张宝玺, 张正海, 等. 2021.“十三五”我国辣椒育种研究进展、产业现状及展望[J]. 中国蔬菜, 384(02): 21-29. ( Wang L H, Zhang B X, Zhang Z H, et al.2021. Status in breeding and production of Capsicum spp. in china during 'the thirteenth five-year plan' period and future prospect[J]. China Vegetables, 384(02): 21-29.) [10] 王燕, 王晓莉, 王源超. 2020. 作物疫病菌致病机制研究进展与面临的挑战[J].中国科学基金, 34(04): 393-400. (Wang Y, Wang X L, Wang Y C.2020. Sustainable control of Phytophthora diseases: Progress and challenge[J]. Bulletin of National Natural Science Foundation of China, 34(04): 393-400.) [11] 谢梓语, 郭恩辉, 孙宇波, 等. 2018. 枯草芽胞杆菌B1409对番茄和辣椒的防病促生作用[J]. 植物保护学报, 45(03): 520-527. (Xie Z Y, Guo E H, Sun Y B, et al.2018. The growth-promotion effect of Bacillus subtilis strain B1409 on tomato and pepper and its control activity against Alternaria solani and Phytophthora capsici[J]. Journal of Plant Protection, 45(03): 520-527.) [12] 杨琦瑶, 索雅丽, 郭荣君, 等. 2012. 枯草芽孢杆菌B006对黄瓜枯萎病菌和辣椒疫霉病菌的抑制作用及其抗菌组分分析[J]. 中国生物防治学报, 28(02): 235-242. (Yang Q Y, Suo Y L, Guo R J, et al.2012. Antifungal activities and principal component analysis of Bacillus subtilis B006 against Fusarium oxysporum f. sp. cucumerinum and Phytophthora capsici[J]. Chinese Journal of Biological Control, 28(02): 235-242.) [13] 叶旻硕, 马艳, 黄有军. 2020. 生防芽孢杆菌防控辣椒疫病研究进展[J]. 中国农学通报, 36(15): 123-129. (Ye M S, Ma Y, Huang Y J.2020. The control of pepper blight by Bacillus spp.: Research progress[J]. Chinese Agricultural Science Bulletin, 36(15): 123-129.) [14] 游雨晴. 2021. 生物防治在农业病虫害防治中的应用[J]. 新农业, 940(07):13-14. (You Y Q.2021. Application of biological control in the prevention and control of agricultural diseases and pests[J]. Xin Nongye, 940(07):13-14.) [15] Bhusal B, Mmbaga M T.2020. Biological control of Phytophthora blight and growth promotion in sweet pepper by Bacillus species[J]. Biological Control, 150: 104373. [16] Chen Y, Yan F, Chai Y, et al.2013. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation[J]. Environmental Microbiology, 15(3): 848-864. [17] Ezziyyani M, Requena M, Egea‐Gilabert C, et al.2007. Biological control of Phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination[J]. Journal of Phytopathology, 155(6): 342-349. [18] Gilardi G, Vasileiadou A, Garibaldi A, et al.2021. Biocontrol agents and resistance inducers reduce Phytophthora crown rot (Phytophthora capsici) of sweet pepper in closed soilless culture[J]. Phytopathologia Mediterranea, 60(1): 149-163. [19] Hyder S, Gondal A S, Rizvi Z F, et al.2020. Characterization of native plant growth promoting rhizobacteria and their anti-oomycete potential against Phytophthora capsici affecting chilli pepper (Capsicum annum L.)[J]. Scientific Reports, 10(1): 138-159. [20] Lamour K H, Stam R, Jupe J, et al.2012. The oomycete broad-host-range pathogen Phytophthora capsici[J]. Molecular Plant Pathology, 13(4): 329-337. [21] Lee K J, Kamala-Kannan S, Sub H S, et al.2007. Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis[J]. World Journal of Microbiology and Biotechnology, 24(7): 1139-1145. [22] Li H, Cai X, Gong J, et al.2019. Long-term organic farming manipulated rhizospheric microbiome and Bacillus antagonism against pepper blight (Phytophthora capsici)[J]. Frontiers in Microbiology, 10: 342. [23] Scott P, Bader M K-F, Burgess T, et al.2019. Global biogeography and invasion risk of the plant pathogen genus Phytophthora[J]. Environmental Science & Policy, 101: 175-182. [24] Syed-Ab-Rahman S F, Carvalhais L C, Chua E, et al.2018. Identification of soil bacterial isolates suppressing different Phytophthora spp. and promoting plant growth[J]. Frontiers in Plant Science, 9: 1502. [25] Tyler B M, Tripathy S, Zhang X, et al.2006. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis[J]. Science, 313(5791):1261-1266. [26] Zhang S, White T L, Martinez M C, et al.2010. Evaluation of plant growth-promoting rhizobacteria for control of Phytophthora blight on squash under greenhouse conditions[J]. Biological Control, 53(1): 129-135. |
|
|
|