|
|
Identification and Cold Stress Expression Analysis of CML Gene Family in Erianthus fulvus Based on Transcriptome |
QIAN Zhen-Feng1, GU Shu-Jie1, ZHAO Xue-Ting1, RAO Xi-Bing1, ZENG Dan2, SHEN Qing-Qing2, ZHANG Rong-Qiong2, CHEN Shu-Ying2, HE Li-Lian1,2,*, LI Fu-Sheng1,2,* |
1 College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; 2 Sugarcane Research Institute, Yunnan Agricultural University, Kunming 650201, China |
|
|
Abstract Calmodulin-like (CML) is a calcium-binding protein in plant cells that is involved in signal transduction during growth, development, and stress. In order to explore the expression pattern of CML family genes in Erianthus fulvus under cold stress, 39 EfCML family genes were identified based on transcriptome data, and bioinformatics and expression analysis under cold stress were carried out. The analysis of the physicochemical properties of the proteins showed the number of amino acid residues, molecular weight, and isoelectric point of EfCMLs proteins was 59~312, 6.240 21~34.017 78 kD, and 3.99~11.14, respectively. The predicted results of subcellular localization showed that the 39 EfCMLs were located in the cytoplasm, cell membrane, and nucleus, respectively. Conservative domain analysis showed that EfCML family proteins contained 1~4 typical EF-hand domains. Motif analysis showed that EfCML family proteins contained 1~4 typical Ca2+ binding motifs. Phylogenetic tree analysis showed that EfCMLs proteins could be divided into 11 groups. Expression analysis of cold stress showed that low temperature could induce differential expression of EfCML family genes, with EfCML1 and EfCML2 were consistently up-regulated, and reached peak value at 72 h cold stress with 27 and 35 times higher than that of the control (P<0.01), showing the most active state. This study provides basic data for in-depth analysis of the cold stress regulation mechanism of E. fulvus CML genes.
|
Received: 15 June 2021
|
|
Corresponding Authors:
*helilian905@sohu.com; lfs810@sina.com
|
|
|
|
[1] 曹哲群, 肖芙荣, 陈疏影, 等 . 2017. 7 个蔗茅野生种及其后代材料苗期耐寒性鉴定[J]. 作物杂志 , (05): 43-48. (Cao Z Q, Xiao F R, Chen S Y, et al. 2017. Identification of cold tolerance in seven wild sugarcane and three offsprings at seedling stage[J]. Crops, (05): 43-48.) [2] 陈超, 端木慧子, 朱丹, 等 . 2015. 大豆 CML 家族基因的生物信息学分析[J]. 大豆科学 , 034(006): 957-963. (Chen C, Duanmu H Z, Zhu D, et al.2015. Bioinformatics analysis of GmCML genes in soybean genome[J]. Soybean Science, 034(006): 957-963.) [3] 崔桥云 .2017. 茶树 CML21 启动子及 CML 基因家族的克隆和表达分析[D]. 硕士学位论文, 南京农业大学, 导师: 黎星辉, pp. 28-40. (Cui Q Y.2017. Isolation and expression of CML21 promoter and CML family from Camellia sinensis[D]. Thesis for M. S., Nanjing Agricultural University, Supervisor: Li X H, pp. 28-40.) [4] 洪林, 杨蕾, 杨海健, 等 . 2020. AP2/ERF 转录因子调控植物非生物胁迫响应研究进展[J]. 植物学报, 55(04): 481-496. (Hong L, Yang L, Yang H J, et al.2020. Research advances in AP2/ERF transcription factors in regulating plant responses to abiotic stress[J]. Chinese Bulletin of Botany, 55(04): 481-496.) [5] 路普 .2018. 棉花 GPCR 及 MATE 基因家族全基因组分析和非生物胁迫功能鉴定[D]. 硕士学位论文, 中国农业科学院, 导师: 刘方, pp. 1-7. (Lu P.2018. Genome wide analysis and functional characterization of GPCR and MATE gene families under abiotic stress in cotton[D]. Thesis for M. S., Chinese Academy of Agricultural Sciences, Supervisor: Liu F, pp. 1-7.) [6] 罗澜, 司修洋, 孙蕾, 等 . 2020. 甜瓜 CML 基因家族的鉴定与表达特性分析[J/OL]. 分子植物育种 . http://kns.cnki.net/ kcms/detail/46.1068. S. 20200731.1358.004. html. (Luo L, Si X Y, Sun L, et al. 2020. Identification and expression characteristic analysis of CML gene family of melon[J/OL]. Molecular Plant Breeding. http://kns.cnki.net/ kcms/detail/46.1068.S.20200731.1358.004.html [7] 孟玉, 陈疏影, 徐荣, 等 . 2018. 蔗茅野生种响应低温胁迫的数字基因表达谱[J]. 分子植物育种 , 16(12): 3877-3886. (Meng Y, Chen S Y, Xu R, et al.2018. Digital gene expression profiles of wild species of Erianthus fulvus response to low temperature stress[J]. Molecular Plant Breeding, 16(12): 3877-3886.) [8] 蒲敏, 罗绍兰, 廉小平, 等 . 2018. 结球甘蓝 CML 家族基因及其在授粉后柱头中的表达[J]. 园艺学报, 45(11): 2129-2140. (Pu M, Luo S L, Lian X P, et al.2018. Bioinfor‐matics and expression analysis after pollination of stigma of CML family genes in Brassica oleracea var. capitata[J]. Acta Horticulturae Sinica, 45(11): 2129-2140.) [9] 阙友雄, 许莉萍, 徐景升, 等 . 2009. 甘蔗基因表达定量 PCR 分析中内参基因的选择[J]. 热带作物学报 , 30(03): 274-278. (Que Y X, Xu L P, Xu J S, et al.2009. Selection of control genes in real-time qPCR analysis of gene expression in sugarcane[J]. Chinese Journal of Tropical Crops, 30(03): 274-278.) [10] 沈先岳, 徐荣, 吴清莲, 等 . 2020. 甘蔗与蔗茅杂交亲本及后代材料的抗旱性鉴定[J]. 中国农学通报, 36(20): 7-13. (Shen X Y, Xu R, Wu Q L, et al.2020. Saccharum spp.× Erianthus fulvus and their hybrid offspring: Identification of drought resistance[J]. Chinese Agricultural Science Bulletin, 36(20): 7-13.) [11] 乌凤章, 王贺新, 徐国辉, 等 . 2015. 木本植物低温胁迫生理及分子机制研究进展[J]. 林业科学, 51(07): 116-128. (Wu F Z, Wang H X, Xu G H, et al.2015. Research progress on the physiological and molecular mechanisms of woody plants under low temperature stress[J]. Scientia Silvae Sinicae, 51(07): 116-128.) [12] 杨秀, 周忠丽, 许艳超, 等 . 2019. 棉花 CML 基因家族成员鉴定与功能分析[J]. 棉花学报, 031(004): 307-318. (Yang X, Zhou Z L, Xu Y C, et al.2019. Identification and functional analysis of CML gene family in cotton[J]. Cotton Science, 031(004): 307-318.) [13] 曾后清, 张夏俊, 张亚仙, 等 . 2016. 植物类钙调素生理功能的研究进展[J]. 中国科学: 生命科学, 46(06): 705-715. (Zeng H Q, Zhang X J, Zhang Y X, et al.2016. Physiological functions of calmodulin-like proteins in plants[J]. Scientia Sinica (Vitae), 46(06): 705-715.) [14] 朱健康, 倪建平 . 2016. 植物非生物胁迫信号转导及应答[J].中国稻米, 22(06): 52-60. (Zhu J K, Ni J P.2016. Abiot‐ic stress signaling and responses in plants[J]. China Rice, 22(06): 52-60.) [15] Bender K W, Snedden W A.2013. Calmodulinrelated proteins step out from the shadow of their namesake[J]. Plant Physiology, 163(2): 486-495. [16] Bongkoj B, Teerapong B.2007. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins[J]. BMC Plant Biology, 7(1): 4. [17] Chinnusamy V, Zhu J H, Zhu J K.2007. Cold stress regulation of gene expression in plants[J]. Trends in Plant Sci‐ ence, 12(10): 444-451. [18] Delk N A, Johnson K A, Chowdhury N I, et al.2005. CML24, regulated in expression by diverse stimuli, encodes a po‐ tential Ca2+ sensor that functions in responses to abscis |
|
|
|