|
|
Research Progress on Effects of Gut Microbiota on Semen Quality and Reproductive Performance of Male Animals |
DU Zhao-Hui1, YOU Jun-Yi1, HAN Pei-Yuan1, ZHANG Hong-Xing2, WANG Yuan3, LIANG Guo-Dong4, MA Yun-Hui4, SHI Xin-E1, HU Jian-Hong1, SUN Shi-Duo1, LI Xiao1,* |
1 College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; 2 Animal Husbandry Technology Extension of Shaanxi Province, Xi'an 710016, China; 3 Animal Husbandry and Veterinary Center Baoji, Baoji 721001, China; 4 Dali Zhongkang Livestock Breeding Co., Ltd., Dali 715100, China |
|
|
Abstract Semen quality is an essential contributor to reproductive efficiency in livestock production, as well as an important indicator of breeding selection and genetic potential of male livestock, which is of great significance for livestock production. As the largest microecosystem in domestic animals, gut microbiota participates in multiple physiological and pathological processes, including male infertility, obesity, inflammation and cancer, involved in material and energy metabolism, has an important impact on body health. In this paper, the progress on the efffect of gut microbiota on semen quality and reproductive performance of male livestocks were reviewed, This review provides novel ideas for improving semen quality and promoting efficient delivery of excellent genes.
|
Received: 31 May 2022
|
|
Corresponding Authors:
*nice.lixiao@gmail.com
|
|
|
|
[1] 陈志林, 冯美莹, 陈预明, 等. 2014. 公猪繁殖障碍的表现与致病机理[J]. 猪业科学(06). 30-34. (Chen Z L, Feng M Y, Chen Y M, et al. 2014. Performance and pathogenic mechanism of reproductive disorder in boars[J]. Swine Industry Science (06). 30-34.) [2] 邓卓琳, 印遇龙, 邓近平 . 2020. 短链脂肪酸在生猪产业的研究与应用[J]. 中国饲料(01): 10-14. (Deng Z L, Yin Y L, Deng J P. 2020. Research and application of short chain fatty acids in pig industry[J]. China Feed (01): 10-14.) [3] 贾荣玲, 刘耀东, 李生涛 . 2019. 猪霍乱沙门氏杆菌的临床分离鉴定及耐药性分析[J]. 黑龙江畜牧兽医 (17): 101-104. (Jia R L, Liu Y D, Li S T. 2019. Clinical isolation, identification and drug resistance analysis of Salmonella cholerae from pigs[J]. Heilongjiang Animal Science and Veterinary Medicine (17): 101-104.) [4] 李双平 .2005. 一氧化氮对人类精子活力和顶体反应影响的试验研究[D]. 硕士学位论文, 山西医科大学, 导师:徐计秀 , pp. 13. (Li S P. 2005. Effects of nitric oxide on human sperm motility and acrosome reaction [D]. Thesis for M. S., Shanxi Medical University, Supervisor: Xu J X, pp. 13.) [5] 李卓君, 陈春香, 钟小菊, 等. 2022. 猪肠道微生物组成、影响因素及其对重要经济性状的影响研究进展[J]. 中国畜牧兽医(07): 2557-2566. (Li Z J, Chen C X, Zhong X J, et al. 2022. Research progress on intestinal microbiota composition, influencing factors and their effects on important economic traits of pigs[J]. China Animal Science and Veterinary Medicine (07): 2557-2566.) [6] 彭高强, 文颖娟, 仝武宁, 等. 2023. 肠道微生物代谢产物短链脂肪酸对抑郁症的作用研究进展[J]. 解放军医学杂志, 48(02): 224-230. (Peng G Q, Wen Y J, Tong W N, et al. 2022. Research progress of intestinal microbial metabolites short-chain fatty acids on depression[J]. PLA Medical Journal, 48(02): 224-230.) [7] 童晶晶, 黎军, 周裕文, 等. 2019. 肠道菌群与疾病的研究进展[J]. 医学信息, 32: 22-25. (Tong J J, Li J, Zhou Y W, et al. 2019. Research progress of intestinal microbiota and diseases[J]. Journal of Medical Information, 32: 22-25.) [8] 王丽云, 李艳华, 王彦平, 等. 2020. 部分微量元素对种用家畜精液品质影响的研究进展[J]. 上海畜牧兽医通讯, 17-19. (Wang L Y, LI Y H, Wang Y P, et al. 2020. Research progress on the effects of some trace elements on semen quality of breeding livestock[J]. Shanghai Animal Hus bandry and Veterinary Bulletin, 17-19.) [9] 王雪艳, 肖明霞, 王乙茹, 等. 2021. 凝结芽孢杆菌对畜禽肠道有害菌及有益菌的抑菌性能研究[J]. 饲料博览(06): 1-6. (Wang X Y, Xiao M X, Wang Y R, et al. 2021. Study on antibacterial performance of Bacillus coagulans against harmful and beneficial bacteria in intestinal tract of livestock and poultry[J]. Feed Review (06): 1-6.) [10] 武丹 .2021. 发酵饲料对公猪精液品质的影响[D]. 硕士学位论文, 西北农林科技大学, 导师:李晓, pp. 30.(Wu D. 2021. Effect of fermented feed on boar semen quality [D]. Thesis for M.S., Northwest A&F University, Supervisor: Li X, pp. 30.) [11] 谢元平, 荣莉, 貌杨萍, 等. 2012. 针刺对免疫性不育症雄性大鼠的抗精子抗体及 5-羟色胺的调节作用[J]. 新中医, 44: 137-139. (Xie Y P, Rong L, Maung Y P, et al. 2012. Effects of acupuncture on the regulation of anti-sperm antibodies and serotonin in male rats with immune infertility[J]. New Chinese Medicine, 44: 137-139.) [12] 邢树文, 焦德志 . 2003. 膳食纤维与肠道细菌对人体的影响[J]. 高师理科学刊,(02): 60-62;77.62;77.) [13] 杨贤树, 吴方超, 张翔栋, 等. 2021. 环境污染物对种公畜精子质量影响的研究进展[J]. 黑龙江畜牧兽医, (19): 44-49. (Yang X S, Wu F C, Zhang X D, et al. 2021. Research progress on the effects of environmental pollutants on sperm quality of breeding stock[J]. Heilongjiang Animal Husbandry and Veterinary Science, (19): 44-49.) [14] 杨旭, 郭良清, 刘素荣 . 2021. 肠道菌群与糖尿病相关性研究进展[J]. 湖南中医杂志, 37: 211-214. (Yang X, Guo L Q, Liu Surong.2021. Research progress on the relationship between intestinal microbiota and diabetes mellitus[J]. Hunan Journal of Traditional Chinese Medicine, 37: 211-214.) [15] 喻东山 .2000. 抑郁症和皮质醇[J]. 中华行为医学与脑科学杂志, (04): 81-82. (Yu D. 2000. Depression and cortisol[J]. Chinese Journal of Behavioral Medicine and Brain Science, (04): 81-82.) [16] 张德明, 黄嘉訸, 李劲树, 等. 2022. 猪肠道微生物及其代谢产物与肠道屏障研究进展[J]. 畜牧兽医学报(05): 1334-1344. (Zhang D M, Huang J H, Li J S, et al. 2022. The pig gut microbes and their metabolic products and the research progress of intestinal barrier[J]. Journal of animal husbandry and veterinary (05): 1334-1344.) [17] 朱华, 郭亚茜, 杜晓鹏, 等. 2018. 链脲佐菌素诱导糖尿病大鼠模型肠道菌群变化[J]. 中国实验动物学报 , 26: 349-356. (Zhu H, Guo Y Q, Du X P, et al. 2018. Changes of intestinal microbiota in streptozotocin induced diabetic rats[J]. Chinese Journal of Laboratory Animals, 26: 349-356.) [18] 朱秋凤, 张卫辉, 黄强, 等. 2018. 种公猪的精准营养和饲喂管理要点[J]. 猪业科学, 35: 38-41. (Zhu Q F, Zhang W H, Huang Q, et al. 2018. Key points of precise nutrition and feeding management for breeding boars[J]. Science of Swine Industry, 35: 38-41.) [19] Abrahamse E, Huybers S, Alles M S, et. al.2015. Fermented infant formula increases ileal protein digestibility and reduces ileal proteo lytic activity compared with standard and hydrolyzed infant formulas in piglets[J]. Journal of Nutrition, 145(7): 1423-1428. [20] Al-Asmakh M, Stukenborg J B, Reda A, et al. 2014. The gut microbiota and developmental programming of the testis in mice[J]. Public Library of Science One, 9(8): e103809. [21] Bazer F W.2012. Contributions of an animal scientist to understanding the biology of the uterus and pregnancy[J]. Reproduction Fertility and Development, 25(1): 129-147. [22] Clarke G, Stilling R M, Kennedy P J, et al. 2014. Minireview: Gut microbiota: The neglected endocrine organ[J]. Molecular Endocrinology, 28(8): 1221-1238. [23] Colldén H, Landin A, Wallenius V, et al. 2019. The gut micro‐biota is a major regulator of androgen metabolism in intestinal contents[J]. American Journal of Physiology Endocrinology Metabolism, 317(6): e1182-e1192. [24] Crean A J, Senior A M.2019. High-fat diets reduce male reproductive success in animal models: A systematic review and meta-analysis[J]. Obesity Reviews, 20(6): 921-933. [25] Cryan J F, Dinan T G.2012. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour[J]. Nature Reviews Neuroscience, 13(10): 701-712. [26] Dai Z, Wu Z, Hang S, et al. 2015. Amino acid metabolism in intestinal bacteria and its potential implications for mam malian reproduction[J]. Molecular Human Reproduction, 21(5): 389-409. [27] DelCurto H, Wu G, Satterfield M C.2013. Nutrition and reproduction: Links to epigenetics and metabolic syndrome in offspring[J]. Current Opinion in Clinical Nutrition & Metabolic Care, 16(4): 385-391. [28] Ding N, Zhang X, Zhang X D, et al. 2020. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes[J]. Gut, 69(9): 1608-1619. [29] Funabashi M, Grove T L, Wang M, et al. 2020. A metabolic pathway for bile acid dehydroxylation by the gut microbiome[J]. Nature, 582(7813): 566-570. [30] Gu S, Chen D, Zhang J N, et al. 2013. Bacterial community mapping of the mouse gastrointestinal tract[J]. Public Library of Science One, 8(10): e74957. [31] Harada N, Hanaoka R, Hanada K, et al. 2016. Hypogonadism alters cecal and fecal microbiota in male mice[J]. Gut Microbes, 7(6): 533-539. [32] He Y, Wang B, Wen L, et al. 2022. Effects of dietary fiber on human health[J]. Food Science and Human Wellness, 11(1): 1-10. [33] Hou D, Zhou X, Zhong X, et al. 2013. Microbiota of the seminal fluid from healthy and infertile men[J]. Fertility and Sterility, 100(5): 1261-1269. [34] Hussein S, Yu X Y, Farouk M H, et al. 2021. The role effects of dietary fiber on intestinal microbial composition and digestive physiological functions of pigs: A review[J]. Indian Journal of Animal Research, 55(7): 737-743. [35] Jiao N, Chen Y, Zhu Y, et al. 2020. Protective effects of catalpol on diabetes mellitus-induced male reproductive damage via suppression of the AGEs/RAGE/Nox4 signaling pathway[J]. Life Sciences, 256: 116736. [36] Karakas S E, Surampudi P.2018. New biomarkers to evaluate hyperandrogenemic women and hypogonadal men[J]. Advances in Clinical Chemistry, 86: 71-125. [37] Lee W Y, Lee R., Kim H C, et al. 2014. Pig spermatozoa defect in acrosome formation caused poor motion parameters and fertilization failure through artificial insemination and in vitro fertilization[J]. Asian-Australasian Journal of Animmal Sciences, 27(10): 1417-1425. [38] Levkovich T, Poutahidis T, Smillie C, et al. 2013. Probiotic bacteria induce a 'glow of health'[J]. Public Library of Science One, 8(1): e53867. [39] Li D, Liu R., Wang M, et al. 2022a. 3β-Hydroxysteroid dehydrogenase expressed by gut microbes degrades testoster one and is linked to depression in males[J]. Cell Host Microbe, 30(3): 329-339. [40] Li Q, Chen H, Zhang M, et al. 2019. Altered short chain fatty acid profiles induced by dietary fiber intervention regulate AMPK levels and intestinal homeostasis[J]. Food Function, 10(11): 7174-7187. [41] Li X, Cheng W, Shang H, et al. 2022b. The Interplay between androgen and gut microbiota: Is there a microbiota-gut-testis axis[J]. Reproductive Sciences, 29(6): 1674-1684. [42] Liu J B, Chen K, Li Z F, et al. 2022. Glyphosate-induced gut microbiota dysbiosis facilitates male reproductive toxicity in rats[J]. Science of the Total Environment, 805: 150368. [43] Liu L, Shu A, Zhu Y, et al. 2021. Cornuside alleviates diabetes mellitus-induced testicular damage by modulating the gut microbiota[J]. Evidence- Based Complementary and Alternative Medicine, 2021, (9): 1-13. [44] Maretti C, Cavallini G.2017. The association of a probiotic with a prebiotic (Flortec, Bracco) to improve the quality/quantity of spermatozoa in infertile patients with idiopathic oligoasthenoteratospermia: A pilot study[J]. Andrology, 5(3): 439-444. [45] Markle J G, Frank D N, Mortin-Toth S, et al. 2013. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity[J]. Science, 339(6123): 1084-1088. [46] Markowiak-Kopeć P, Śliżewska K.2020. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome[J]. Nutrients, 12(4): 1107. [47] Poutahidis T, Springer A, Levkovich T, et al. 2014. Probiotic microbes sustain youthful serum testosterone levels and testicular size in aging mice[J]. Public Library of Science One, 9(1): e84877. [48] Qin J, Li R, Raes J, et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 464(7285): 59-65. [49] Ridlon J M, Ikegawa S, Alves J M, et al. 2013. Clostridium scindens: A human gut microbe with a high potential to convert glucocorticoids into androgens[J]. Journal of Lipid Research, 54(9): 2437-2449. [50] Sartono G, Rizqiyah I, Asmarinah, et al. 2019. Three bacteriocin peptides from a lactic acid bacterium Weissella confusa MBF8-1 with spermicidal activity[J]. Current Pharmaceutical Biotechnology, 20(9): 766-771. [51] Sato N, Moore F A, Kone B C, et al. 2006. Differential induction of PPAR-gamma by luminal glutamine and iNOS by luminal arginine in the rodent postischemic small bowel[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 290(4): G616-G623. [52] Thompson H J.2021. The dietary guidelines for americans (2020-2025): Pulses, dietary fiber, and chronic disease risk-A call for clarity and action[J]. Nutrients, 13(11): 4034. [53] Tian X, Yu Z, Feng P, et al. 2019. Lactobacillus plantarum TW1-1 alleviates diethylhexylphthalate-induced testicular damage in mice by modulating gut microbiota and decreasing inflammation[J]. Frontiers Cellular and Infection Microbiology, 9: 221. [54] Tremellen K, McPhee N, Pearce K, et al. 2018. Endotoxin-initiated inflammation reduces testosterone production in men of reproductive age[J]. American Journal of Physiology Endocrinology Metabolism, 314(3): e206-e213. [55] Wang B, Yu H, He Y, et al. 2021. Effect of soybean insoluble dietary fiber on prevention of obesity in high-fat diet fed mice via regulation of the gut microbiota[J]. Food Function, 12(17): 7923-7937. [56] Wu G.2009. Amino acids: Metabolism, functions, and nutrition[J]. Amino Acids, 37(1): 1-17. [57] Wu G, Bazer F W, Davis T A, et al. 2009. Arginine metabolism and nutrition in growth, health and disease[J]. Amino Acids, 37(1): 153-168. [58] Wu G, Bazer F W, Satterfield M C, et al. 2013. Impacts of arginine nutrition on embryonic and fetal development in mammals[J]. Amino Acids, 45(2): 241-256. [59] Zhang T, Sun P, Geng Q, et al. 2022. Disrupted spermatogenesis in a metabolic syndrome model: The role of vitamin A metabolism in the gut-testis axis[J]. Gut, 71(1): 78-87. [60] Zhao Q, Huang J F, Cheng Y, et al. 2021. Polyamine metabolism links gut microbiota and testicular dysfunction[J]. Microbiome, 9(1): 224. [61] Zhao Y, Feng Y, Liu M, et al. 2020a. Single-cell RNA sequencing analysis reveals alginate oligosaccharides preventing chemotherapy-induced mucositis[J]. Mucosal Immunology, 13(3): 437-448. [62] Zhao Y, Zhang P, Ge W, et al. 2020b. Alginate oligosaccharides improve germ cell development and testicular microenvironment to rescue busulfan disrupted spermato genesis[J]. Theranostics, 10(7): 3308-3324. [63] Zhu Y, Du Q, Jiao N, et al. 2021. Catalpol ameliorates diabetes-induced testicular injury and modulates gut microbiota[J]. Life Sciences, 267: 118881. |
[1] |
FAN Zi-Jian, ZHANG Zi-Yue, CAO Jian-Meng, YI Meng-Meng, GAO Feng-Ying, KE Xiao-Li, LIU Zhi-Gang, WANG Miao, LU Mai-Xin. Effects of Different Initial Feeding on Gut Microbiota Structure of Tilapia (Oreochromis niloticus) During Early Development[J]. 农业生物技术学报, 2023, 31(5): 1032-1042. |
|
|
|
|