|
|
Effects of Different Initial Feeding on Gut Microbiota Structure of Tilapia (Oreochromis niloticus) During Early Development |
FAN Zi-Jian1,2, ZHANG Zi-Yue2, CAO Jian-Meng2,3, YI Meng-Meng2,3, GAO Feng-Ying2,3, KE Xiao-Li2,3, LIU Zhi-Gang2,3, WANG Miao2,3*, LU Mai-Xin2,3* |
1 College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; 2 Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; 3 Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China |
|
|
Abstract Tilapia (Oreochromis niloticus) is one of the most important commercial freshwater fish in China. Understanding the effect of different initial feeding on the intestine microbiota of tilapia can provide a basis for the scientific cultivation of tilapia fry. This study aimed to explore the influence of different initial feeding on the morphology and the structure of microbial community of tilapia gut. All female fry of 11 days post-fertilization (dpf) were fed with 3 diets for 20 d, including Artemia salina (FA group), high protein artificial diet (protein level=25.5%) (FH group), and low protein artificial diet (protein level=16%) (FL group). The samples were collected on 11 (before feeding), 20 and 30 dpf, respectively. The results showed the survival rate of tilapia fry in FL group was significantly different from that in FA and FH group (P<0.05), with the highest value in group FA ((98.00±0.54)%) and the lowest value in group FL ((92.00±1.50)%). The results of intestinal histology showed that the folds were damaged and sparsely arranged in the fish intestine of the group FL. High-throughput sequencing analysis showed that the abundance and the diversity of intestinal microbiota in the group FA at 20 dpf were the lowest, the abundance of intestinal microbiota in the group FL at 30 dpf and the diversity of intestinal microbiota in the group FA at 30 dpf were the highest. At the phylum level, Proteobacteria was the dominant microbiota in the intestine of tilapia fry in FA, FH, and FL group, whereas Rhodobacter and Gemmobacter were dominated at the genus level. Compared with groups FH and FL, the relative abundance of Rhodobacter and Cetobacterium in group FA was significantly increased (P<0.05). Compared with group FA and FL, the relative abundance of Aeromonas and Pseudomonas in group FH was significantly increased (P<0.05). Compared with groups FA and FH, the relative abundance of Shinella and Brevifollis in group FL was significantly increased (P<0.05). The above results showed that, compared with the formulated feed, A. salina feeding could improve the survival rate of tilapia fry, improve the intestinal tissue structure, and have a beneficial effect on the intestinal microflora structure; The survival rate of tilapia in the high-protein diet group was significantly higher than that in the low-protein diet group, and there was no significant difference from the A. salina group, which could be used as initial feeding for tilapia. This study provides basic data for the selection of tilapia initial feeding.
|
Received: 11 July 2022
|
|
Corresponding Authors:
*mx-lu@163.com; miaowfly@163.com
|
|
|
|
[1] 蔡雪峰, 罗琳, 战文斌, 等. 2006. 壳寡糖对虹鳟幼鱼肠道菌群影响的研究[J]. 中国海洋大学学报(自然科学版), 36(04): 606-610. (Cai X F, Luo L, Zhan W B, et al. 2006. Effects of chitooligosaccharides on intestinal bacterial flora of juvenile rainbow trout[J]. Periodical of Ocean University of China, 36(4): 606-610.) [2] 李倩, 洪梦佳, 章雨牧, 等. 2016. 海洋鱼类胃肠道微生物的研究进展[J]. 药物生物技术, 23(06): 561-564. (Li Q, Hong M J, Zhang Y M, et al. 2016. Research progress on gastro-intestinal tract microorganism of marine fishs[J]. Pharmaceutical Biotechnology, 23(6): 561-564.) [3] 李玉萍, 田晶晶, 张凯, 等. 2022. 皇竹草对草鱼脂肪蓄积及肠道菌群组成的影响[J]. 上海海洋大学报, 31(04): 915-928. (Li Y P, Tian J J, Zhang K, et al. 2022. Effects of Pennisetum sinese Roxb meal on fat accumlation and intestinal microbiota composition of juvenile grass carp (Ctenopharyngodon idella)[J]. Journal of Shanghai Ocean University, 31(04): 915-928.) [4] 刘海姿, 梁英, 翟少伟. 2021. 不同开口饵料对美洲鳗鲡白仔苗肠道菌群的影响[J]. 饲料研究, 44(05): 51-55. (Liu H Z, Liang Y, Zhai S W. 2021. Effect of different starter feeds on intesinal flora of Anguilla rostrata at elver stage[J]. Feed Research, 44(05): 51-55.) [5] 孟晓林, 李文均, 聂国兴. 2019. 鱼类肠道菌群影响因子研究进展[J]. 水产学报, 43(01): 143-155. (Meng X L, Li W J, Nie G X. 2019. Effect of different factors on the fish intesinal microbiota[J]. Journal of Fisheries of China, 43(1): 143-155.) [6] 裴鹏兵, 吴洁琼, 梁宏豪, 等. 2018. 生物净水栅对凡纳滨对虾肠道菌群组成的影响[J]. 水产科学, 37(03): 301-308. (Pei P B, Wu J Q, Liang H H, et al. 2018. Effects of biological water purification grid on intesinal flora composition of pacific white leg shrimp Litopenaeus van- namei[J]. Fisheries Science, 37(03): 301-308.) [7] 王淼, 卢迈新, 衣萌萌, 等. 2020. 水体中泼洒复合乳杆菌对尼罗罗非鱼养殖池塘环境、肠道和鳃健康的影响[J]. 水产学报, 44(04): 651-660. (Wang M, Lu M X, Yi M M, et al. 2020. Effects of mixed culture of Lactobacillus as water additive on the environment of pond, and the health of intestine and gill of tilapia (Oreochromis niloti- cus)[J]. Journal of Fisheries of China, 44(04): 651-660.) [8] 吴莉芳, 秦贵信, 孙泽威, 等. 2010. 饲料中去皮豆粕替代鱼粉对埃及胡子鲇消化酶活力和肠道组织的影响[J]. 中山大学学报(自然科学版), 49(4): 99-105. (Wu L F, Qin G X, Sun Z W, et al. 2010. Effect of dietary dehulled soyabean meal replacing fish meal on the activity of digestive enzyme and the intestinal tissue of Clarias lazera[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 49(4): 99-105.) [9] 翟万营, 郭安宁. 2016. 鱼类肠道微生物研究进展[J]. 河南水产,(4): 18-21, 40.21, 40.) [10] 张红燕, 袁永明, 贺艳辉, 等. 2017. 中国罗非鱼产品出口贸易特点及展望[J]. 农业展望, 13(09): 104-107. (Zhang H Y, Yuan Y M, He Y H, et al. 2017. Characteristics and prospects of China's tilapia export trade[J]. Agricultural Outlook, 13(09): 104-107.) [11] 周晓波, 黄燕华, 曹俊明, 等. 2014. 5 种乳酸菌对罗非鱼生长性能、体成分、血清生化指标及肠道菌群的影响[J]. 动物营养学报, 26(07): 2009-2017. (Zhou X B, Huang Y H, Cao J M, et al. 2014. Effects of 5 kinds of Lactoba-cillus on growth performance, body composition, serum biochemical indices and intestinal microflora of tilapia (Orechomis niloticus×O. aurer)[J]. Chinese Journal of Animal Nutrition, 26(07): 2009-2017.) [12] 朱锦裕, 韩蓓, 卜弘毅, 等. 2020. 豆粕对乌鳢肠道菌群组成及微生物氨基酸代谢酶活性的影响[J]. 水产学报, 44(04): 642-650. (Zhu J Y, Han B, Bu H Y, et al. 2020. Effects of dietary soybean meal on the intestinal microbita and metabolic enzymes activities of microbial amino acids of Channa argus[J]. Journal of Fisheries of China, 44(04): 642-650.) [13] Blumberg R, Powrie F. 2012. Microbiota, disease, and back to health: A metastable journey[J]. Science Translational Medicine, 4(137): 137rv7. [14] Cai W Q, Li S F, Ma J Y. 2004. Diseases resistance of Nile tilapia (Oreochromis niloticus), blue tilapia (Oreochromis aureus) and their hybrid (female Nile tilapia×male blue tilapia) to Aeromonas sobria[J]. Aquaculture, 229(1-4): 79-87. [15] Campbell A C, Buswell J A. 2010. The intestinal microflora of farmed dover sole (Solea solea) at different stages of fish development[J]. Journal of Applied Microbiology, 55(2): 215-223. [16] Chacón M, Figueras M J, Castro-Escarpulli G, et al. 2003. Distribution of virulence genes in clinical and environmental isolates of Aeromonas spp.[J]. Antonie van Leeuwenhoek, 84(4): 269-278. [17] Chen W M, Cho Nian Tsz, Huang W C, et al. 2013. Description of Gemmobacter fontiphilus sp. nov., isolated from a freshwater spring, reclassification of Catellibacterium nectariphilum as Gemmobacter nectariphilus comb. nov., Catellibacterium changlense as Gemmobacter changlensis comb. nov., Catellibacterium aquatile as Gemmobacter aquaticus nom. nov., Catellibacterium caeni as Gemmo- bacter caeni comb. nov., Catellibacterium nanjingense as Gemmobacter nanjingensis comb. nov., and emended description of the genus Gemmobacter and of Gemmobacter aquatilis[J]. International Journal of Systematic and Evolutionary Microbiology, 63(pt2): 470-478. [18] Cottrell M T, Kirchman D L.et al. 2000. Natural assemblages of marine Proteobacteria and members of the cytophaga- flavobacter cluster consuming low-and high-molecular- weight dissolved organic matter[J]. Applied & Environmental Microbiology, 66(4): 1692-1692. [19] Deng Y, Verdegem M C J, Eding E, et al. 2022. Effect of rearing systems and dietary probiotic supplementation on the growth and gut microbiota of Nile tilapia (Oreochro-mis niloticus) larvae[J]. Aquaculture, 546: 737297. [20] Eddy S D, Jones S H. 2002. Microbiology of summer flounder Paralichthys dentatus fingerling production at a marine fish hatchery[J]. Aquaculture, 211(1-4): 9-28. [21] Finegold S M, Vaisanen M L, Molitoris D R, et al. 2003. Ceto- bacterium somerae sp nov from human feces and emended description of the genus Cetobacterium[J]. Systematic and Applied Microbiology, 26(2): 177-181. [22] Hamlin H J, Herbing I, Kling L J. 2000. Histological and morphological evaluations of the digestive tract and associated organs of haddock throughout posthatching ontogeny[J]. Journal of Fish Biology, 57(3): 716-732. [23] Hansen G H, Olafsen J A. 1999. Bacterial interactions in early life stages of marine cold water fish[J]. Microbial Ecology, 38(1): 1-26. [24] Heike S, Matthias S, Meinhard S, et al. 2010. Phylogeny of Proteobacteria and Bacteroidetes from oxic habitats of a tidal flat ecosystem[J]. FEMS Microbiology Ecology, 54(3): 351-365. [25] Hu C H, Xu Y, Xia M S, et al. 2007. Effects of Cu2+-exchanged montmorillonite on growth performance, microbial ecology and intestinal morphology of Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 270(1-4): 200-206. [26] Ibrahim A N A F, Noll M S M C, Valenti W C. 2015. Zooplankton capturing by Nile tilapia, Oreochromis niloticus (Teleostei: Cichlidae) throughout post-larval development[J]. Zoologia (Curitiba), 32(6): 469-475. [27] Ingerslev H C, von Gersdorff Jørgensen L, Lenz Strube M, et al. 2014. The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type[J]. Aquaculture, 424: 24-34. [28] Kochhar S, Martin F P. 2015. Metabonomics and gut microbiota in nutrition and disease[M]. Humana Press, Switzerland, pp. 235-260. [29] Komaroff, Anthony L. 2017. The microbiome and risk for obesity and diabetes[J]. JAMA, 317(4): 355. [30] Li Z F, Yu E M, Wang G J, et al. 2018. Broad bean (Vicia faba L.) induces intestinal inflammation in grass carp (Cteno- pharyngodon idellus C. et V) by increasing relative abundances of intestinal gram-negative and flagellated bacteria[J]. Frontiers in Microbiology, 9: 1913-1915. [31] Merrifield D L, Burnard D, Bradley G, et al. 2009. Microbial community diversity associated with the intestinal mucosa of farmed rainbow trout (Oncoryhnchus mykiss Walbaum)[J]. Aquaculture Research, 40(9): 1064-1072. [32] Pond M J, Stone D M, Alderman D J. 2006. Comparison of conventional and molecular techniques to investigate the intestinal microflora of rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 261(1): 194-203. [33] Ring E, Sperstad S, Myklebust R, et al. 2006. Characterisation of the microbiota associated with intestine of Atlantic cod (Gadus morhua) - The effect of fish meal, standard soybean meal and a bioprocessed soybean meal[J]. Aquaculture, 261(3): 829-841. [34] Ringø E, Zhou Z, Vecino J L G, et al. 2015. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story?[J]. Aquaculture Nutrition, 22(2): 219-282. [35] Roeselers1 G, Mittge E K, Stephens W Z, et al. 2011. Evidence for a core gut microbiota in the zebrafish[J]. The ISME Journal, 5(10): 1595-1608. [36] Rombout J H W M, Abelli L, Picchietti S, et al. 2011. Teleost intestinal immunology[J]. Fish Shellfish Immunology, 31(5): 616-626. [37] Samuel B S, Shaito A, Motoike T, et al. 2008. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41[J]. Proceedings of the National Academy of Sciences of the USA, 105(43): 16767-16772. [38] Tesfahun A, Temesgen M. 2018. Food and feeding habits of Nile tilapia Oreochromis niloticus (L.) in Ethiopian water bodies: A review[J]. International Journal of Fisheries and Aquatic Studies, 6(1): 43-47. [39] Wu L Y, Wen C Q, Qin Y J, et al. 2015. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis[J]. BMC Microbiology, 15(1): 125. [40] Zhang X, Li Y W, Mo Z Q, et al. 2014. Outbreak of a novel disease associated with Vibrio mimicus infection in fresh water cultured yellow catfish, Pelteobagrus fulvidraco[J]. Aquaculture, 432(34): 119-124. |
[1] |
DU Zhao-Hui, YOU Jun-Yi, HAN Pei-Yuan, ZHANG Hong-Xing, WANG Yuan, LIANG Guo-Dong, MA Yun-Hui, SHI Xin-E, HU Jian-Hong, SUN Shi-Duo, LI Xiao. Research Progress on Effects of Gut Microbiota on Semen Quality and Reproductive Performance of Male Animals[J]. 农业生物技术学报, 2023, 31(6): 1296-1303. |
|
|
|
|