|
|
Application and Prospect of Nanopore Sequencing Technology in Plant Pathogen Detection |
LU Hui-Xin, SUN Kai*, YIN Chuan-Lin, HUANG Yu-Dong, YU Xiao-Ping* |
Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China |
|
|
Abstract Plant pathogenic agents seriously threaten the yield and quality of crop. Establishing efficient and accurate pathogen diagnosis technology is critical for disease control. Metagenomic sequencing technology based on next generation sequencing (NGS) platform is an important tool for plant disease identification. However, the application of NGS in the rapid detection of plant pathogens is restricted by the disadvantages of high cost, long experimental period and bulky equipment. Nanopore sequencing technology developed by Oxford Nanopore Technology Co., Ltd. (ONT)(Oxford, United Kingdom) is a new sequencing platform. Compared with the NGS platform, it has advantages such as low cost, short experimental period and easy to use. It is suitable for field detection and has been used in pathogen detection. In this paper, the principle of ONT Nanopore sequencing technology was introduced, and the applications and challenges of this technology in plant pathogen detection were summarized, which provides reference for the further application and improvement of this technology in plant pathogen detection.
|
Received: 03 November 2020
|
|
Corresponding Authors:
* sunkai0719@126.com, yuxiaoping19630306@163.com
|
|
|
|
[1] 曹影, 李伟, 褚鑫, 等. 2020. 单分子纳米孔测序技术及其应用研究进展[J]. 生物工程学报, 36(5): 811-819. (Cao Y, Li W, Chu X, et al.2020. Single molecule nanopore sequencing technology and its application[J]. Journal of Bioengineering, 36(5): 811-819.) [2] 钱亚娟, 徐毅, 周琦, 等. 2014. 利用深度测序技术发掘植物病毒资源[J]. 中国科学: 生命科学, 2014(44): 351-363. (Qian Y J, Xu Y, Zhou Q, et al.2014. Application of next-generation sequencing technology for plant virus identification[J]. Scientia Sinica Vitae, 44(4): 351-363.) [3] 闫冬明, 赵宁, 赵春春, 等. 2020. 纳米孔测序技术研究进展[J]. 中国媒介生物学及控制杂志, 31(3): 380-384. (Yan D M, Zhao N, Zhao C C, et al.2020. Research progress of nanopore sequencing technology[J]. Chinese Journal of Vector Biology and Control, 31(3): 380-384.) [4] 战斌慧, 周雪平. 2018. 高通量测序技术在植物及昆虫病毒检测中的应用[J]. 植物保护, 44(5): 125-131. (Zhan B H, Zhou X P.2018. Application of high throughput sequencing technology in detection of plant and insect viruses[J]. Plant Protection, 44(5): 125-131.) [5] Ashikawa S, Tarumoto N, Imai K, et al.2018. Rapid identification of pathogens from positive blood culture bottles with the MinION nanopore sequencer[J]. Journal of Medical Microbiology, 67(11): 1589-1595. [6] Bian L, Li F, Ge J, et al.2020. Chromosome-level genome assembly of the greenfin horse‐faced filefish (Thamnaconus septentrionalis) using Oxford Nanopore PromethION sequencing and Hi-C technology[J]. Molecular Ecology Resources,(20)4: 1069-1079. [7] Boykin LM, Sseruwagi P, Alicai T, et al.2019. Tree lab: Portable genomics for early detection of plant viruses and pests in Sub-Saharan Africa[J]. Genes,2019.DOI:10.1101/702613 [8] Carradec Q, Poulain J, Boissin E, et al.2020. A framework for in situ molecular characterization of coral holobionts using nanopore sequencing[J]. Scientific Reports, 10: 15893. [9] Chalupowicz L, Dombrovsky A, Gaba V, et al.2018. Diagnosis of plant diseases using Nanopore sequencing platform[J]. Biotechnol Biotechnol Equip. 28(5): 775-785. [10] Cui C, Herlihy JH, Bombarely A, et al.2019. Draft assembly of phytophthora capsici from long-read sequencing uncovers complexity[J]. Molecular Plant-Microbe Interactions, 32(12): 1559-1563. [11] Dutreux F, Da Silva C, d'Agata L, et al.2018. De novo assembly and annotation of three Leptosphaeria genomes using Oxford Nanopore MinION sequencing[J]. Scientific Data, 5: 180235. [12] Edwards A, Debbonaire AR, Nicholls SM, et al.2019. In-field metagenome and 16S rRNA gene amplicon nanopore sequencing robustly characterize glacier microbiota[J]. BioRxiv, 2019. DOI:10.1101/073965 [13] Eisenstein M.2017. An ace in the hole for DNA sequencing[J]. Nature, 550(7675): 285-288. [14] Erwin D, Raymond J. M. H, Lisanne B, et al.2016. The megabase-sized fungal genome of Rhizoctonia solani assembled from nanopore reads only[J]. BioRxiv, 2016. https://doi.org/10.1101/084772 [15] Fellers J P, Webb C, Fellers M C, et al.2019. Wheat virus identification within infected tissue using Nanopore sequencing technology[J]. Plant Disease, 103(9): 2199-2203. [16] Filloux D, Fernandez E, Loire E, et al.2018. Nanopore-based detection and characterization of yam viruses[J]. Scientific Reports, 8(1): 17879. [17] Forbes J D, Knox N C, Ronholm J, et al.2017. Metagenomics: The next culture-independent game changer[J]. Frontiers in Microbiology, 8: 1069. [18] Imai K., Tarumoto N, Misawa K.et al.2017. A novel diagnostic method for malaria using loop-mediated isothermal amplification (LAMP) and MinION nanopore sequencer.[J]. BMC Infectious Diseases, 17(1): 621. [19] George Taiaroa, Daniel Rawlinson, Leo Featherstone.et al.2020. Direct RNA sequencing and early evolution of SARS-CoV-2[J]. BioRxiv, 2020. DOI:10.1101/2020.03.05.976167 [20] Goldberg B, Sichtig H, Geyer C, et al.2015. Making the leap from research laboratory to clinic: Challenges and opportunities for next-generation sequencing in infectious disease diagnostics[J]. mBio, 6(6), e01888-15. [21] Gu W, Miller S, Chiu CY.2019. Clinical metagenomic next-generation sequencing for pathogen detection[C]. Annual review of pathology, 14: 319-338. [22] Hu Y, Gamran S G, Andrew W M, et al.2019. Pathogen Detection and Microbiome Analysis of Infected Wheat Using a Portable Dna Sequencer[J]. Phytobiomes journal. 3(2): 92-101. [23] Kai S, Matsuo Y, Nakagawa S, et al.2019. Rapid bacterial identification by direct PCR amplification of 16S rRNA genes using the MinION™ nanopore sequencer[J]. FEBS Open Bio, 9(3): 548-557. [24] Kasianowicz J J, Bezrukov S M.2016. On 'three decades of nanopore sequencing[J]. Nature biotechnology, 34(5): 481-482. [25] Kovaka S, Fan Y, Ni B.et al.2020. Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED[J]. Nature Biotechnology, 39(4):431-441. [26] Kumar K R, Cowley M J, Davis R L.2019. Next-generation sequencing and emerging technologies[J]. Eminars in Thrombosis and Hemostasis, 45(7): 661-673. [27] Laver T, Harrison J, O'Neill P A, et al.2015. Assessing the performance of the Oxford Nanopore Technologies MinION[J]. Biomolecular Detection and Quantification, 3: 1-8. [28] Leiva A M, Siriwan W, Lopez-Alvarez D, et al.2020. Nanopore-based complete genome sequence of a Sri Lankan Cassava mosaic virus (Geminivirus) strain from Thailand[J]. Microbiology Resource Announcements, 9(6): e01274-19. [29] Lu H, Giordano F, Ning Z.2016. Oxford nanopore MinION sequencing and genome assembly[J]. Genomics, proteomics & bioinformatics, 14(5): 265-279. [30] Naito F Y B, Melo F L, Fonseca M E N, et al.2019. Nanopore sequencing of a novel bipartite New World begomovirus infecting cowpea[J]. Archives of Virology, 164(7): 1907-1910. [31] Parker M T, Knop K, Sherwood A V, et al.2020. Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification[J]. eLife Sciences, 2020(9): e49658. [32] Payne A, Holmes N, Rakyan V, et al.2019. BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files[J]. Bioinformatics (Oxford, England), 35(13): 2193-2198. [33] Petersen L M, Martin I W, Moschetti W E, et al.2019. Third-generation sequencing in the clinical laboratory: Exploring the advantages and challenges of nanopore sequencing[J]. Journal of Clinical Microbiology, 58(1): e01315-19. [34] Quick J, Nicholas J L, Sophie D, et al.2016. Real-time, portable genome sequencing for Ebola surveillance[J]. Nature, 530(7589): 228-232. [35] Smith A M, Jain M, Mulroney L, et al.2019. Reading canonical and modified nucleobases in 16S ribosomal RNA using nanopore native RNA sequencing[J]. PLOS ONE, 14(5): e0216709. [36] Wang X, Feng H, Chang Y, et al.2020. Population sequencing enhances understanding of tea plant evolution[J]. Nature Communications, 11(1): 4447. [37] Wei Q, Wang J, Wang W, et al.2020. A high-quality chromosome-level genome assembly reveals genetics for important traits in eggplant[J]. Horticulture Research, 7:153. |
[1] |
LU Peng-Peng, WU Wei-Huai, ZHENG Jin-Long, WANG Gui-Hua, HE Chun-Ping, LIN Pei-Qun, HUANG Xing, LIANG Yan-Qiong, YI Ke-Xian. Establishment and Optimization of Single-tube Nested PCR Detection Technique for Phytoplasma Related to Sisal Purple Leafroll Disease[J]. 农业生物技术学报, 2021, 29(7): 1426-1434. |
|
|
|
|