|
|
Establishment of Qualitative and Quantitative Detection Method for Transgenic Brassica napus NS-B50027-4 |
LEI Zhan1, WANG Jian-Cheng3, ZHANG Chen1, LI Kai2,3, HUANG Kun-Lun3, SHANG Ying1, XU Wen-Tao2,3 |
1 College of agriculture and food, Kunming University of Science and Technology, Kunming 650504, China;
2. Beijing Advanced Innovation Center for Food Nutrition and Human Health/Department of Nutrition and Health, China Agricultural University, Beijing 100083, China;
3 Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture / College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China |
|
|
Abstract Genetically modified Brassica napus NS-B50027-4 is a new variety containing a high proportion of ω3 fatty acids and LC-ω3 fatty acids approved by the Australia-New Zealand Food Standards Agency. So far there is no literature report on the detection method of this new genetically modified B. napus variety. Therefore, it is necessary to establish a qualitative and quantitative detection method for this species. In this study, primers and probes were designed according to the internal reference gene HMG (high mobile group protein) of B. napus and A02 chromosome of transgenic B. napus NS-B50027-4, respectively. The specificity, sensitivity and accuracy of the primers and probes were determined by conventional PCR and qPCR technology to determine the detection limit and quantification limit of the detection method. The experimental results show that the two designed primers could only amplify the target, the detection limit of hmg primer can reach 5 copies/μL, and the detection limit of A02dn2 primer is 1 copy/μL. Therefore, the established qualitative and quantitative detection method of genetically modified B. napus NS-B50027-4 has high specificity and selectivity, excellent sensitivity and accuracy. The research results provide technical support for the qualitative and quantitative detection of genetically modified B. napus NS-B50027-4.
|
Received: 26 January 2021
|
|
Corresponding Authors:
* xuwentao@cau.edu.cn
|
|
|
|
[1] 董立明, 杨帆, 邢珍娟, 等. 2021.一种五重荧光PCR筛查转基因水稻方法的建立[J]. 食品科学: 1-10.
(Dong L M, Yang F, Xing Z J, et al.2021. Establishment of a five-fold fluorescent PCR method for screening transgenic rice[J]. Food Science, 1-10.)
[2] 高佳奇, 陈硕, 王迪, 等. 2020. 六种作物内标准基因开发与检测研究进展[J]. 生物技术进展,10: 613-622.
(Gao J Q, Chen S, Wang D, et al.2020. Development and detection of standard genes in six crops[J]. Progress in Biotechnology, 10: 613-622.)
[3] 高文祥, 马尔科姆·迪瓦恩, 安东尼奥·雷昂福特, 等. 2019. 近交转基因油菜品系NS-B50027-4及其种子.中国,CN109661458A[P].
(Gao W X, Malcolm D, Antonio L, et al.2019. Inbred Transgenic Rapeseed NS-B50027-4 and Its Seed, China, CN109661458A[P].)
[4] 李鹏, 张琳, 叶吉妮, 等. 2018. 抗病转基因水稻M12及其产品成分的定性、定量PCR检测方法[J]. 作物学报, 044(007): 949-955.
(Li P, Zhang L, Ye J N, et al.2018. A qualitative and quantitative PCR detection method for disease-resistant genetically modified rice M12 and its derivates[J].Acta Agronomica Sinica, 044(007):949-955.)
[5] 刘龙男, 李鹤卫, 张华, 等. 2020. 抗草甘膦转基因油菜与4个种群野芥菜抗性回交2代(BC2F_1)的适合度[J]. 农业生物技术学报, 28(08):1379-1389.
(Liu L N, Li H W, Zhang H, et al.2020. Fittability of Glyphosate-resistant transgenic rapeseed with resistance backcross of wild mustard (Brassica jungei) in 2 generations (BC2F_1)[J]. Journal of Agricultural Biotechnology, 28(08):1379-1389.)
[6] 吴珊, 庞俊琴, 庄军红, 等. 2020. 我国转基因作物的研发与安全管理[J]. 中国农业科技导报, 22: 11-16.
(Wu S, Pang J Q, Zhuang J H, et al.2020. Research and development and safety management of genetically modified crops in China[J].Chinese Journal of Agricultural Science and Technology, 22: 11-16.)
[7] 王颢潜, 肖芳, 杨蕾, 等. 2020. 转基因玉米双抗12-5转化体特异性PCR方法验证结果分析[J]. 生物技术通报, 036(005): 48-55.
(Wang H Q, Xiao F, Yang L, et al.2020. Analysis of verification results by PCR methods for genetically modified double-resistant 12-5 event-specific maize[J]. Biotechnology Bulletin, 036(005): 48-55.)
[8] 伍向苹, 王直新, 卓宸剑, 等. 2021.甘蓝型油菜CO同源基因功能初步研究[J]. 中国油料作物学报,43(02): 186-194.
(Wu X P, Wang Z X, Zhuo C J, et al.2021. Functional study of CO homologous gene in Brassica napus L[J].Chinese Journal of Oil Crops, 43(02): 186-194.)
[9] 杨树果. 2020. 全球转基因作物发展演变与趋势[J]. 中国农业大学学报, 25: 13-26.
(Yang G S.2020. Evolution and trend of global GM crops[J]. Journal of China Agricultural University, 25: 13-26.)
[10] 翟杉杉, 李夏莹, 王颢潜, 等. 2021. 油菜转化体鉴定阳性质粒分子pYCID-1905的研制及应用[J]. 中国油料作物学报, 43(01): 99-109.
(Zhai S S, Li X Y, Wang H Q, et al.2021. Registration and application of an optical particle PYCID-1905 for the identification of Yang properties from rape[J].Chinese Journal of Oil Crops, 43(01): 99-109.)
[11] 赵凯琴, 杨清辉, 张云云, 等. 2021. 过表达AGPase编码基因对甘蓝型油菜种子淀粉含量及油脂合成的影响[J]. 中国油料作物学报: 1-9.
(Zhao K Q, Yang Q H, Zhang Y Y, et al.2021. Effects of over-expression of AGPase gene on seed starch content and lipid synthesis in Brassica napus L[J]. Chinese Journal of Oil Crops: 1-9.)
[12] Bailey-Serres J, Parker J E, Ainsworth E A, et al.2019. Genetic strategies for improving crop yields[J]. Nature, 575: 109-118.
[13] Bao A, Chen H, Chen L, et al.2019. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean[J]. BMC Plant Biology, 19(1): 131.
[14] Bedair M, Glenn K C, 2020. Evaluation of the use of untargeted metabolomics in the safety assessment of genetically modified crops[J]. Metabolomics, 16(10):111.
[15] Blair C D, 2019. Deducing the role of virus genome-derived PIWI-associated RNAs in the Mosquito-Arbovirus arms race[J]. Frontiers in Genetics, 10: 1114.
[16] Brookes G, Barfoot P, 2020. GM crop technology use 1996-2018: Farm income and production impacts[J]. Gm Crops & Food-Biotechnology in Agriculture and the Food Chain, 11: 242-261.
[17] Gong L, Zhang H, Liu X, et al.2020. Ectopic expression of HaNAC1, an ATAF transcription factor from Haloxylon ammodendron, improves growth and drought tolerance in transgenic Arabidopsis[J]. Plant Physiology and Biochemistry, 151: 535-544.
[18] Haber A L, Griffiths K R, Jamting A K, et al.2008. Addition of gold nanoparticles to real-time PCR: Effect on PCR profile and SYBR Green I fluorescence[J]. Analytical and Bioanalytical Chemistry, 392: 887-896.
[19] He J, Liu Y, Yuan D, et al.2020. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice[J]. Proceedings of the National Academy of Sciences Of the USA, 117: 271-277.
[20] Ju Y L, Yue X F, Min Z, et al.2020. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis[J]. Plant Physiology and Biochemistry, 146: 98-111.
[21] Khoshbin Z, Housaindokht M R, Verdian A, et al.2018. Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors[J]. Biosensors & Bioelectronics, 116: 130-147.
[22] Liu H, Wang J, Zeng H, et al.2021. RPA-Cas12a-FS: A frontline nucleic acid rapid detection system for food safety based on CRISPR-Cas12a combined with recombinase polymerase amplification[J]. Food Chemistry, 334:127608.
[23] Salisu I B, Shahid A A, Yaqoob A, et al.2017. Molecular approaches for high throughput detection and quantification of genetically modified crops: A review[J]. Frontiers in Plant Science, 8: 1670.
[24] Singh M, Pal D, Sood P, et al.2020. Construct-specific loop-mediated isothermal amplification: Rapid detection of genetically modified crops with insect resistance or herbicide tolerance[J]. Journal of Aoac International, 103: 1191-1200.
[25] Tang Y, Bao X, Zhi Y, et al.2019. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice[J]. Frontiers in Plant Science, DOI: 10.3389/fpls.2019.00168.
[26] Yun Z, Peng L, Huo S, et al.2017. Auto-microfluidic thin-film chip for genetically modified maize detection[J]. Food Control, 80: 360-365.
[27] Zeng H, Wang J, Jia J, et al.2021. Development of a lateral flow test strip for simultaneous detection of BT-Cry1Ab, BT-Cry1Ac and CP4 EPSPS proteins in genetically modified crops[J]. Food Chemistry, 335: 127627. |
|
|
|