|
|
Advances in Biosynthesis and Metabolism Regulation of Fruit Volatile Compounds |
LI Xiao-Ying1,2, SONG Li-Qin1, LI Ming-Yuan1, WANG Hai-Jing1, LIU Jian-Zhen1, WU Jun-Kai1,2,*, ZHANG Li-Bin1,2 |
1 College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; 2 Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao 066004, China |
|
|
Abstract Volatile compounds are major impact on total fruit flavor quality, and are critical for promoting consumer consumption and market competitiveness. Fruit aroma is a complex mixture of a large number of volatile compounds whose composition is specific to species, and is determined not only by genetics but also by environmental factors, cultural practices and postharvest handling. Thus, control the synthesis of fruit volatiles from the molecular level is of great significance. Based on their biosynthetic origin, fruit aroma volatiles can be divided into several classes, including terpenoids, fatty acid derivatives and amino acid derivatives, and serve as cues that facilitate a variety of biological functions. Recently, depend on the development of molecular biology technology, the biosynthetic pathways, biosynthesis-related enzymes, transcription factors, genes and important regulatory mechanism were revealed, which enriched the content of breeding aspect. In this paper, the composition, important biological functions and main biosynthesis pathways of fruit volatiles were introduced comprehensively, and the role of some related enzymes, genes, treatments in fruit aroma synthesis were summarized. This review provides scientific theoretical support for fruit aroma quality research, and scientific basis for improving fruit flavor quality based on molecular breeding technology.
|
Received: 23 March 2022
|
|
Corresponding Authors:
* mans5@163.com
|
|
|
|
[1] 贾楠楠, 邹智荣, 李国萍, 等. 2016. GNAQ对SH-SY5Y细胞增殖的作用及机制[J]. 昆明医科大学学报, 37(01): 8-11. (Jia N N, Zhou Z R, Li G P, et al.2016. Effect of GNAQ on the proliferation of SH-SY5Y cells and its mechanism of action[J]. Journal of Kunming Medical University, 37(01): 8-11.) [2] 李振2017. 绵羊GNAQ和GNAS基因生物学功能研究[D]. 博士学位论文, 山西农业大学, 导师: 庞全海, pp. 3-15. (Li Z2017. Study on the biological function of GNAQ and GNAS genes in sheep[D]. Thesis for Ph.D., Shanxi Agricultural University, Supervisor: Pang Q H, pp. 3-15.) [3] 王晓孟, 屈凤祥, 王丹, 等. 2022. Ghrelin基因多态性与多囊卵巢综合征的相关性[J]. 青岛大学学报(医学版), 1-3. (Wang X M, Qu F X, Wang D, et al. 2022. Association of Ghrelin gene polymorphisms with polycystic ovary syndrome [J]. Journal of Qing Dao University (Medical Sciences), 1-3.) [4] 徐蓓蓓2009. 拟南芥异三聚体G蛋白在脱落酸、一氧化氮、过氧化氢调控气孔运动中的功能研究[D]. 硕士学位论文, 扬州大学, 导师: 梁建生, pp. 25-31. (Xu P P.2009. The function of Arabidopsis thaliana heterotrimeric G protein in the regulation of stomatal movement by abscisic acid, nitric oxide and hydrogen peroxide [D]. Thesis for M.S., Yangzhou University, Supervisor: Liang J S., pp. 25-31.) [5] 徐友涵, 1987. 信息跨膜传递的分子机制[J]. 生物化学与生物物理进展,(01): 10-15. (Xu Y H. 1987. Molecular mechanism of information transmission across membranes [J]. Progress in Biochemistry and Biophysics, (01): 10-15.) [6] 于要升, 林杉, 王开胜, 等. 2016. 绵羊oar-Mir-200b对GNAQ基因的表达调控[J]. 石河子大学学报(自然科学版), 34(04): 424-430. (Yu Y S, Li B, Wang K S, et al.2016. Expression regulation of GNAQ gene by sheep oar-miR-200b[J]. Journal of Shihezi University(Natural Science), 34(04): 424-430.) [7] 张帅, 毛丽丽, 斯璐, 等. 2022. GNAQ突变在黑色素瘤中的相关研究进展[J]. 肿瘤综合治疗电子杂志, 8(01), 14-21. (Zhang S, Mao L L, Si L, et al.2022. Research progress of GNAQ mutation in melanoma[J]. Journal of Multidisciplinary Cancer Management (Electronic Version), 8(01): 14-21.) [8] Baltoumas F A, Theodoropoulou M C, Hamodrakas S J.2013. Interactions of the α-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: A critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials[J]. Journal of Structural Biology, 182(3): 209-218. [9] Bichsel C, Bischoff J.2019. A somatic missense mutation in GNAQ causes capillary malformation[J]. Current Opinion in Hematology, 26(3): 179-184. [10] Brouwer N J, Verdijk R M, Heegaard S, et al.2022. Conjunctival melanoma: New insights in tumour genetics and immunology, leading to new therapeutic options[J]. Progress in Retinal And Eye Research, 86: 100971. [11] Castilho A C, Nogueira M F, Fontes P K, et al.2014. Ovarian superstimulation using FSH combined with equine chorionic gonadotropin (eCG) upregulates mRNA-encoding proteins involved with LH receptor intracellular signaling in granulosa cells from nelore cows[J]. Theriogenology, 82(9): 1199-1205. [12] Chen B, Leverette R D, Schwinn D A, et al.1996. Human g(alpha q): CDNA and tissue distribution[J]. Biochimica et Biophysica Acta, 1281(2): 125-128. [13] Chen H, Yao W, Jin D, et al.2008. Cloning, expression pattern, chromosomal localization, and evolution analysis of porcine GNAQ, GNA11, and GNA14[J]. Biochemical Genetics, 46(7-8): 398-405. [14] de Oliveira V, Schaefer J, Calder M, et al.2019. Uterine Gα(q/11) signaling, in a progesterone-dependent manner, critically regulates the acquisition of uterine receptivity in the female mouse[J]. FASEB Journal, 33(8): 9374-9387. [15] Denis-Henriot D, Lacasa D, Goldsmith P K, et al.1996. Site-related differences in G-protein alpha subunit expression during adipogenesis in vitro: Possible key role for Gq/11 alpha in the control of preadipocyte differentiation[J]. Biochemical and Biophysical Research Communications, 220(2): 443-448. [16] Di Berardino C, Peserico A, Capacchietti G, et al.2021. Equine chorionic gonadotropin as an effective FSH replacement for in vitro ovine follicle and oocyte development[J]. International Journal of Molecular Sciences, 22(22). [17] Donadeu F X, Esteves C L, Doyle L K, et al.2011. Phospholipase Cβ3 mediates LH-induced granulosa cell differentiation[J]. Endocrinology, 152(7): 2857-2869. [18] Duc N M, Kim H R, Chung K Y2015. Structural mechanism of G protein activation by G protein-coupled receptor[J]. European Journal of Pharmacology, 763(Pt B): 214-222. [19] Feng X, Arang N, Rigiracciolo D C, et al.2019. A platform of synthetic lethal gene interaction networks reveals that the GNAQ uveal melanoma oncogene controls the hippo pathway through FAK[J]. Cancer Cell, 35(3): 457-472.e455. [20] Fleming Y, Armstrong C G, Morrice N, et al.2000. Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/Jnk) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7[J]. Biochemical Journal, 352(Pt 1): 145-154. [21] Freeman S M, Inoue K, Smith A L, et al.2014. The neuroanatomical distribution of oxytocin receptor binding and mRNA in the male rhesus macaque (Macaca mulatta)[J]. Psychoneuroendocrinology, 45: 128-141. [22] Haugen T B, Paulssen R H, Hansson V1993. Cell-specific expression of Gq/11 protein and mRNA in rat seminiferous tubules[J]. FEBS Letters, 329(1-2): 96-98. [23] He X Y, Di R, Guo X F,.et al.2022. Transcriptomic changes of photoperiodic response in the hypothalamus were identified in ovariectomized and estradiol-treated sheep[J]. Frontiers in Molecular Biosciences, 9: 848144. [24] Ivey K, Tyson B, Ukidwe P2003. Galphaq and Galpha11 proteins mediate endothelin-1 signaling in neural crest-derived pharyngeal arch mesenchyme[J]. Developmental Biology, 255(2): 230-237. [25] Jager M J, Shields C L, Cebulla C M, et al.2020. Uveal melanoma[J]. Nature Reviews. Disease Primers, 6(1): 24. [26] Ji K, Ye L, Mason M D, et al.2013. The kiss-1/kiss-1r complex as a negative regulator of cell motility and cancer metastasis (review)[J]. International Journal of Molecular Medicine, 32(4): 747-754. [27] Jurek B, Neumann I D2018. The oxytocin receptor: From intracellular signaling to behavior[J]. Physiological Reviews, 98(3): 1805-1908. [28] Klenke S, Tan S, Hahn S, et al.2010. A functional GNAQ promoter haplotype is associated with altered Gq expression and with insulin resistance and obesity in women with polycystic ovary syndrome[J]. Pharmacogenetics and Genomics, 20(8): 476-484. [29] Kotani M, Detheux M, Vandenbogaerde A, et al.2001. The metastasis suppressor gene Kiss-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GRR54[J]. Journal of Biological Chemistry, 276(37): 34631-34636. [30] Li Z, Lu J, Sun X, et al.2016. Molecular cloning, mRNA expression, and localization of the G-protein subunit Galphaq in sheep testis and epididymis[J]. Asian-Australasian Journal of Animal Sciences, 29(12): 1702-1709. [31] Moers A, Nieswandt B, Massberg S, et al.2003. G13 is an essential mediator of platelet activation in hemostasis and thrombosis[J]. Nature Medicine, 9(11): 1418-1422. [32] Navaratnarajah P, Gershenson A, Ross E M2017. The binding of activated Gα(q) to phospholipase c-β exhibits anomalous affinity[J]. Journal of Biological Chemistry, 292(40): 16787-16801. [33] Offermanns S, Hashimoto K, Watanabe M, et al.1997. Impaired motor coordination and persistent multiple climbing fiber innervation of cerebellar purkinje cells in mice lacking galphaq[J]. Proceedings of the National Academy of Sciences of the USA, 94(25): 14089-14094. [34] Oldham W M, Hamm H E2008. Heterotrimeric G protein activation by G-protein-coupled receptors[J]. Nature Reviews. Molecular Cell Biology, 9(1): 60-71. [35] Padol A R, Sukumaran S V, Sadam A, et al.2017. Hypercholesterolemia impairs oxytocin-induced uterine contractility in late pregnant mouse[J]. Reproduction, 153(5): 565-576. [36] Paulssen R H, Paulssen E J, Gordeladze J O, et al.1991. Cell-specific expression of guanine nucleotide-binding proteins in rat testicular cells[J]. Biology of Reproduction, 45(4): 566-571. [37] Schneider B, Riedel K, Zhivov A, et al.2019. Frequent and yet unreported GNAQ and GNA11 mutations are found in uveal melanomas[J]. Pathology & Oncology Research, 25(4): 1319-1325. [38] Shan L X, Bardin C W, Hardy M P1997. Immunohistochemical analysis of androgen effects on androgen receptor expression in developing leydig and sertoli cells[J]. Endocrinology, 138(3): 1259-1266. [39] Shim U, Kim H N, Lee H, et al.2015. Pathway analysis based on a genome-wide association study of polycystic ovary syndrome[J]. PLoS One, 10(8): e0136609. [40] Stamatiades G A, Toufaily C, Kim H K, et al.2022. Deletion of Gαq/11 or Gαs proteins in gonadotropes differentially affects gonadotropin production and secretion in mice[J]. Endocrinology, 163(2): bqab247. [41] Wettschureck N, Moers A, Wallenwein B, et al.2005. Loss of Gq/11 family G proteins in the nervous system causes pituitary somatotroph hypoplasia and dwarfism in mice[J]. Nature Reviews Molecular Cell Biology, 25(5): 1942-1948. [42] Yang G, Li S, Zhao Q, et al.2021. Transcriptomic and metabolomic insights into the variety of sperm storage in oviduct of egg layers[J]. Poultry Science, 100(6): 101087. [43] Zhai M, Zhao Z, Yang M, et al.2019. The effect of GNAQ methylation on GnRH secretion in sheep hypothalamic neurons[J]. Journal of Cellular Biochemistry, 120(12): 19396-19405. [44] Zhang C, Bosch M A, Rønnekleiv O K, et al.2013. Kisspeptin activation of TRPC4 channels in female GnRH neurons requires PIP2 depletion and csrc kinase activation[J]. Endocrinology, 154(8): 2772-2783. [45] Zhang D L, Sun Y J, Ma M L, et al.2018. Gq activity- and β-arrestin-1 scaffolding-mediated ADGRG2/CFTR coupling are required for male fertility[J]. Elife, 7: e33432. [46] Zhang H, Yu J Q, Yang L L, et al.2017. Identification of genome-wide SNP-SNP interactions associated with important traits in chicken[J]. BMC Genomics, 18(1): 892. [47] Zhang L, Shi G.2016. Gq-coupled receptors in autoimmunity[J]. Journal of Immunology Research, 2016: 3969023. [48] Zhu M, Zhang H, Yang H, et al.2022. Targeting GNAQ in hypothalamic nerve cells to regulate seasonal estrus in sheep[J]. Theriogenology, 181: 79-88. |
|
|
|