|
|
High-throughput Sequencing Analysis of the Main Pathogens of Ulcer Diseased Plectropomus leopardus |
WANG Lei2, ZHANG Tian-Shi2, LIU Yang2, ZHANG Zi-Wei2, LI Kai-Min2, ZHU Chun-Hua1, CHEN Song-Lin2,* |
1 Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang)/Guangdong Research Centre on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China; 2 Yellow Sea Fisheries Research Institute/Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs/Qingdao National Laboratory for Marine Science and Technology/Laboratory for Marine Fisheries Science and Food Production Processes, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China |
|
|
Abstract Plectropomus leopardus is a kind of newly farmed fish with high economic value. In recent years, skin ulcer disease occurs in both juvenile and adult fish, resulting in a large number of deaths and great economic losses. It is important to identify the main pathogenic bacteria for disease-resistant breeding. In this study, the diseased fish and normal fish were collected from Hainan, and the skin microbial sequencing and analysis were carried out on 3 generation high-throughput sequencing method. The results showed that there were 403 unique operational taxonomic units (OTUs) in the normal group and 72 unique OTUs in the ulcerated group. The number of OTUs shared by the two groups was 74. In the normal group, there were 16 phyla, 30 classes, 63 orders, 96 families, 145 genera and 168 species were identified on average, while 9 phyla, 12 classes, 27 orders, 38 families, 55 genera and 67 species were identified on average in the diseased fish skin. The difference between two groups indicated that pathogenic bacteria inhibited the growth of normal bacteria, resulting in a significant decrease in the diversity of bacteria structure. There were great differences in dominant bacterium composition between normal group and diseased group. Proteobacteria and Firmicutes were dominant phyla in normal group, while Bacteroidetes and Epsilonbacteraeota were dominant phyla in the diseased fish. ANOVA analysis of variance showed that the content of Vibrio in diseased fish skin was significantly increased, and Vibrio harveyi, V. tubiashii and a specie of uncultured Vibrio were annotated in KRONA analysis. Based on above research, a strain of V. Harveyi was isolated and identified from the ulcer skin of P. leopardus, named as V. harveyi stain Dx21. After the artificial infection with the intraperitoneal injection, the result showed that the V. harveyi stain Dx21 could cause surface ulceration and death in juvenile starfish, which was similar to natural infection. The half-lethal dose (LD50) was 1.0×105 cfu/mL for P. leopardus fries weighing 100 g. This study revealed the flora characteristics of the skin of diseased P. leopardus, suggesting that V. harveyi is one of the main pathogens. This study has certain guiding significance for the skin ulcer disease prevention and control of P. leopardus and the development of vaccine.
|
Received: 09 May 2022
|
|
Corresponding Authors:
* chensl@ysfri.ac.cn
|
|
|
|
[1] 辜良斌, 徐力文, 冯娟, 等. 2015. 豹纹鳃棘鲈尾部溃烂症病原菌的鉴定与药敏试验[J]. 南方水产科学, 11(4): 71-80. (Gu L B, Xu L W, Feng J, et al.2015. Identification and drug sensitive test of bacterial pathogens from Plectropomus leopardus with tail fester disease[J]. South China Fisheries Science, 11(4): 71-80.) [2] 高晓建, 姚东瑞, 孙晶晶, 等. 2015. 4株长牡蛎(Crassostrea gigas)致病性哈维氏弧菌(Vibrio harveyi)鉴定及其毒力基因检测[J]. 海洋湖沼通报, 11(4): 87-96. (Gao X J, Yao D R, Sun J J, et al.2015. Identification of 4 pathogenic Vibrio harveyi strains isolated from diseased oyster (Crassostrea gigas) and detection of their virulence genes[J]. Transactions of Oceanology and Limnology, 11(4): 87-96.) [3] 黄会. 2013. 三种海洋养殖经济动物肠道菌群多样性的研究[D]. 硕士学位论文, 厦门大学, 导师: 邵宗泽, pp. 51-53. (Huang H.2013. The study of intestinal microflora diversity of three maricultured economic animals[D]. Thesis for M.S., Xiamen University, Supervisor: Shao Z Z, pp. 51-53.) [4] 胡琼霞. 2016. 虾, 贝类水产品中细菌多样性分子特性的研究[D]. 硕士学位论文, 上海海洋大学, 导师: 陈兰明, pp. 32. (Hu Q X.2016. Molecular characterization of bacterial diversity in crustaceans and shellfish[D]. Thesis for M.S., Shanghai Ocean University, Supervisor: Chen L M, pp. 32.) [5] 兰欣, 李杰, 李贵阳, 等. 2020. 发病鲆鲽类分离菌株的16S rRNA基因测序分析[J]. 渔业科学进展. 41(3): 142-150. (Lan X, Li J, Li G Y, et al.2020. Sequencing and phylogenetic analysis of the 16S rRNA genes of bacterial strains isolated from diseased flatfish[J]. Progress in Fishery Sciences. 41(3): 142-150.) [6] 李东亮. 2016. 感染嗜水气单胞菌草鱼肠道菌群结构研究[D]. 硕士学位论文, 西北农林科技大学, 导师: 王高学, pp. 25-26. (Li D L.2016. Study of the intestinal flora structure of grass carp infection with Aeromonas hydrophila[D]. Thesis for M.S., Northwest Agriculture and Forest University, Supervisor: Wang G X, pp. 25-26.) [7] 李沛翰,李鹏,宋宏彬. 2018, 宏基因组学在传染病防控中的应用进展[J]. 生物技术通报, 34(3): 43-52. (Li P H, Li P, Song H B.2018. Application of metagenomics in prevention and control of infectious diseases[J]. Biotechnology Bulletin, 34(3): 43-52.) [8] 林能锋,潘滢,许斌福,等. 2021, 养殖花鲈(Lateolabrax maculatus)肠道菌群的多样性分析[J]. 水产养殖, 42(6): 1-7. (Lin N F, Pan Y, Xu B F, et al.2021. Microbial diversity of intestinal contents and mucus in cultured seabass (Lateolabrax maculatus)[J]. Journal of Aquaculture, 42(6): 1-7.) [9] 刘金叶, 王永波, 符书源, 等. 2019. 海南省豹纹鳃棘鲈商品鱼养殖常见病害发生特点及防治技术[J]. 现代农业科技, (24): 203. (Liu J Y, Wang Y B, Fu S Y, et al. 2019. Characteristics and control techniques of common diseases in commercial cultured Plectropomus leopardus in Hainan Province[J]. Modern Agricultural Science and Technology, (24): 203.) [10] 钱爱东, 张冬星, 单晓枫. 2018. 硬骨鱼黏膜表面适应性免疫应答研究进展[J]. 吉林农业大学学报, 40(4): 463-470. [Qian A D, Zhang D X, Shan X F.2018. Adaptive immune responses at mucosal surfaces of teleost fish[J]. Journal of Jilin Agricultural University, 40(4): 463-470.) [11] 孙波, 郑光辉, 高阳, 等. 2021. 宏基因组技术在感染性疾病中的应用[J]. 中国临床新医学, 14(1): 19-22. (Sun B, Zheng G H, Gao Y, et al.2021. Application of metagenome technology in infectious diseases[J]. Chinese Journal of New Clinical Medicine, 14(1): 19-22.) [12] 孙坤, 王晓磊, 张洁, 等. 2022. 基于16S rRNA高通量测序评价患病草鱼体表及肝脏细菌多样性[J]. 水产科学, 41(2): 202-209. (Sun K, Wang X L, Zhang J, et al.2022. Microbial diversity of the skin and liver of disease grass carp evaluated by the high-throughput sequencing of 16S rRNA gene[J]. Fisheries Science, 41(2): 202-209.) [13] 孙丕海, 钱坤, 李晓丽, 等. 2017. 基于高通量测序分析海带表面细菌群落结构[J]. 大连海洋大学学报, 32(1): 7-12. (Sun P H, Qian K, Li X L, et al.2017. Characterization of bacterial community structure on surface of kelp Saccharina japonica by high-throughput sequencing[J]. Journal of Dalian Ocean University, 32(1): 7-12.) [14] 田丽, 黄颉刚, 梁浩, 等. 2020. 炎症性肠病患者肠道菌群的临床研究[J]. 中华实验和临床病毒学杂志, 34(2): 180-181. (Tian L, Huang J G, Liang H, et al.2020. Clinical study on dysbiosis of intestinal microbiota in patients with inflammatory bowel disease[J]. Chinese Journal of Experimental and Clinical Virology, 34(2): 180-181.) [15] 王江勇, 王瑞旋, 刘广锋, 等. 2005. 杂色鲍幼苗大规模死亡与细菌数量的关系[J]. 南方水产, 1(1): 57-61. (Wang J Y, Wang R X, Liu G F, et al.2005. The relationship between extensive death of larvae of abalone Haliotis divesicolor Reeve and number of bacteria[J]. South China Fisheries Science, 1(1): 57-61.) [16] 王凤青, 孙玉增, 任利华, 等. 2018. 海水养殖中水产动物主要致病弧菌研究进展[J]. 中国渔业质量与标准, 8(2): 49-56. (Wang F Q, Sun Y Z, Ren L Y, et al.2018. Research progress on the main pathogenic Vibrio affecting aquatic animals in mariculture[J]. Chinese Fishery Quality and Standards, 8(2): 49-56.] [17] 王锐, 齐遵利, 张秀文, 等. 2011. 东星斑的生物学特性和人工养殖技术[J]. 中国水产,(4): 33-34. Wang R, Qi Z L, Zhang X W, et al. 2011. Biological characteristics and culture technology of Plectropomus leopardus[J]. China Fisheries, (4): 33-34. [18] 王永波, 刘金叶, 郑飞, 等. 2014. 海南椰林湾工厂化养殖豹纹鳃棘鲈的病害及其防控[J]. 水产科技情报, 41(3): 149-151. (Wang Y B, Liu J Y, Zheng F, et al.2014. Disease prevention and control of the industrially cultured Plectropomus leopardus in Coconut Bay, Hainan[J]. Fisheries Science & Technology Information, 41(3): 149-151.) [19] 王祖忠,王朝阳,张迪骏,等. 2016, 宁波沿海陆源排污口弓形杆菌属(Arobacter sp.)和梭菌属(Clostridium sp.)的分布特点[J]. 海洋与湖沼, 47(4): 862-868. (Wang Z Z, Wang C Y, Zhang D J, et al.2016. Arobacter and Clostridium distribution in sewage outlets along Ningbo coast[J]. Oceanologia et Limnologia Sinica, 47(4): 862-868.) [20] 吴后波, 潘金培. 2003. 病原弧菌的致病机理[J]. 水生生物学报, 27(4): 422-426. (Wu H B, Pan J P.2003, Virulence mechanisms of pathogenic Vibrio[J]. Acta Hydrobiologica Sinica, 27(4): 422-426.) [21] 熊向英, 王贤丰, 彭银辉, 等. 2019. 健康和患病卵形鲳鲹肠道菌群结构的差异[J]. 水产学报, 43(5): 1317-1325. (Xiong X Y, Wang X F, Peng Y H, et al.2019. Variance analysis of intestinal bacterial community between healthy and diseased Trachinotus ovatus[J]. Journal of Fisheries of China, 43(5): 1317-1325.) [22] 徐晓丽, 邵蓬, 李灏, 等. 2014. 豹纹鳃棘鲈致病性哈维氏弧菌的分离鉴定与系统发育分析[J]. 华中农业大学学报, 33(4): 112-118. (Xu X L, Shao P, Li H, et al.2014. Identification and phylogenetic analyses of Vibrio harveyi islated from Plectropomus leopardus[J]. Journal of Huazhong Agricultural University, 33(4): 112-118.) [23] 徐晓丽, 尤宏争, 姚学良, 等. 2019. 豹纹鳃棘鲈类结节症病原的分离鉴定[J]. 水产科学, 38(2): 254-259. (Xu X L, You H Z, Yao X L, et al.2019. Isolation and identification of pathogen in leopard coraltrout Plectropomus leopardus with nodular disease[J]. Fisheries Science, 38(2): 254-259.) [24] 许燕, 王印庚, 张正, 等. 2018. 不同健康程度和抗生素氟苯尼考干预下斑石鲷肠道菌群的结构差异[J]. 水产学报, 42(3): 388-398. (Xu Y, Wang Y G, Zhang Z, et al.2018. Variance analysis of bacterial community in the intestine of cultured spotted knifejaw (Oplegnathus punctatus) at different healthy levels and intervened with florfenicol[J]. Journal of Fisheries of China, 42(3): 388-398.) [25] 姚学良, 徐晓丽, 张振奎, 等. 2015. 豹纹鳃棘鲈病原鳗利斯顿氏菌的分离鉴定及生物学特性研究[J]. 中国海洋大学学报(自然科学版), 45(5): 39-45. (Yao X L, Xu X L, Zhang Z K, et al.2015. Isolation of pathogenic Listonella anguillarum from Plectropomus leopardus and its biological characterization[J]. Periodical of Ocean University of China, 45(5): 39-45.) [26] 杨少丽, 王印庚, 董树刚. 2005. 海水养殖鱼类弧菌病的研究进展[J]. 海洋水产研究, 26(4): 75-83. (Yang S L, Wang Y G, Dong S G.2005. Progress of research on vibriosis in marine cultured fish[J]. Marine Fisheries Research, 26(4): 75-83.) [27] 曾学琴, 柳陈圣, 杨雪, 等. 2019. 高通量测序法检测奶牛乳房炎关联微生物群落结构及多样性[J], 浙江农业学报, 31(9): 1437-1445. (Zeng X Q, Liu C J, Yang X, et al.2019. Microbial community structure and diversity of mastitis cows by 16S rRNA high-throughput sequencing[J]. Acta Agriculturae Zhejiangensis, 31(9): 1437-1445.) [28] 张正, 廖梅杰, 李彬, 等. 2014. 两种疾病发生对养殖半滑舌鳎肠道菌群结构的影响分析[J]. 水产学报, 38(9): 1565-1572. (Zhang Z, Liao M J, Li B, et al.2014. Study on cultured halfsmooth tongue sole (Cynoglossus semilaevis Günther) intestinal microflora changes affected by different disease occurrence[J]. Journal of Fisheries of China, 38(9): 1565-1572.) [29] 朱文根, 李星浩, 饶刘瑜, 等. 2019. 感染草鱼呼肠孤病毒对肠道菌群多样性的影响[J]. 水生生物学报, 43(1): 109-116. (Zhu W G, Li X H, Yao L Y, et al.2019. Effects of reovirus infection on the intestinal microbiota diversity of grass carp (Ctenopharyngodon idella)[J]. Acta Hydrobiologica Sinica, 43(1): 109-116.) [30] Wu W J, Liu Q Q, Chen G J, et al.2015. Roseimarinus sediminis gen. nov., sp nov., a facultatively anaerobic bacterium isolated from coastal sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 65(7): 2260-2264. [31] Xu Z, Parra D, Gomez D, et al.2013. Teleost skin, an ancient mucosal surface that elicits gut-like immune responses[J]. Proceedings of the National Academy of Sciences of the USA, 110(32): 13097-13102. [32] Yang A, Li W, Tao Z, et al.2021, Vibrio harveyi isolated from marine aquaculture species in eastern China and virulence to the large yellow croaker (Larimichthys crocea)[J]. Journal of Applied Microbiology, 131(4): 1710-1721. [33] Zhang X, Ding L, Yu Y, et al.2018. The change of teleost skin commensal microbiota is associated with skin mucosal transcriptomic responses during parasitic infection by Ichthyophthirius multifillis[J]. Frontiers in Immunology, 9: 2972. [34] Zhang X H, He X, Austin B.2020, Vibrio harveyi: A serious pathogen of fish and invertebrates in mariculture[J]. Marine Life Science & Technology, 2(3): 231-245. [35] Zhu Z, Duan C, Dong C, et al.2020, Epidemiological situation and phylogenetic relationship of Vibrio harveyi in marine-cultured fishes in China and Southeast Asia[J]. Aquaculture, 529: 735652. |
|
|
|