|
|
Research Progress on AGL17-like Clade Family in Rice (Oryza sativa) |
LI Lu-Hua1, WANG Zhong-Ni2,*, XU Ru-Hong1,* |
1 College of Agriculture, Guizhou University, Guiyang 550025, China; 2 Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China |
|
|
Abstract AGL17-like clade family, which belongs to MADS-box gene family, is an important highly conserved transcription factor in plant. In rice (Oryza sativa), the AGL17-like clade comprises 5 members including OsMADS23, OsMADS25, OsMADS27, OsMADS57 and OsMADS61. Researches demonstrated that AGL17-like clade family members mainly expressed in vegetative organs, and participated in multiple biological processes such as growth and development of root, response to fluctuation of nutrient supply, tiller outgrowth, and stress response. This article expounds functions of AGL17-like clade family members in rice, and miR444 which could specificly target to AGL17-like clade family members. The review may be helpful for further researches in the fields of plant growth and development regulation and stress responses of AGL17-like clade, and provides reference for molecular breeding.
|
Received: 23 November 2021
|
|
Corresponding Authors:
*xrhgz@163.com; zhuanliwang1@163.com
|
|
|
|
[1] 苏亚丽, 刘梦佳, 李海峰. 2016. 水稻MADS-box基因研究进展[J]. 河南农业科学, 45(9): 1-7. (Su Y L, Liu M J, Li H F.2016. Research Progress on MADS-box Genes in rice (Oryza sativa)[J]. Journal of Henan Agricultural Sciences, 45(9): 1-7.) [2] Alvarez-Buylla E R, Pelaz S, Liljegren S J, et al.2000a. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals[J]. Proceedings of the National Academy of Sciences of the USA, 97(10): 5328-5333. [3] Alvarez-Buylla E R, Liljegren S J, Pelaz S, et al.2000b. MADS-box gene evolution beyond flowers: Expression in pollen, endosperm, guard cells, roots and trichomes[J]. The Plant Journal, 24(4): 457-466. [4] Arora R, Agarwal P, Ray S, et al.2007. MADS-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress[J]. BMC Genomics, 8: 242. [5] Bartel D.2004. MicroRNAs: Genomics, biogenesis, mechanism, and function[J]. Cell, 116(2): 281-297. [6] Becker A, Theissen G.2003. The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J]. Molecular Phylogenetics and Evolution, 29(3): 464-489. [7] Bej S, Basak J.2014. MicroRNAs: The potential biomarkers in plant stress response[J]. American Journal of Plant Sciences, 25(05): 748-759. [8] Chen H L, Xu N, Wu Q, et al.2018a. OsMADS27 regulates the root development in a NO3- dependent manner and modulates the salt tolerance in rice (Oryza sativa L.)[J]. Plant Science, 277: 20-32. [9] Chen L P, Zhao Y, Xu S J, et al.2018b. OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice[J]. New Phytologist, 218(1): 219-231. [10] Chen X.2004. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J]. Science, 303(5666): 2022-2025. [11] Chu Y L, Xu N, Wu Q, et al.2019. Rice transcription factor OsMADS57 regulates plant height by modulating gibberellin catabolism[J]. Rice, 12(1): 38. [12] Das S, Parida S K, Agarwal P, et al.2019. Transcription factor OsNFYB9 regulates reproductive growth and development in rice[J]. Planta, 250(6): 1849-1865. [13] De Bodt S, Raes J, Florquin K, et al.2003. Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants[J]. Journal of Molecular Evolution, 56(5): 573-586. [14] Ding Y, Chen Z, Zhu C.2011. Microarray-based analysis of cadmium responsive microRNAs in rice (Oryza sativa)[J]. Journal of Experimental Botany, 62(10): 3563-3573. [15] Duan Y, Xing Z, Diao Z, et al.2012. Characterization of Osmads6-5, a null allele, reveals that OsMADS6 is a critical regulator for early flower development in rice (Oryza sativa L.)[J]. Plant Molecular Biology, 80(4/5): 429-442. [16] Gan Y, Bernreiter A, Filleur S, et al.2012. Overexpressing the ANR1 MADS-Box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development[J]. Plant and Cell Physiology, 53(6): 1003-1016. [17] Gan Y, Filleur S, Rahman A, et al.2005. Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana[J]. Planta, 222(4): 730-742. [18] Guo S Y, Xu Y Y, Liu H H, et al.2013. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14[J]. Nature Communications, 4: 1566. [19] Han P, Garcia-Ponce B, Fonseca-Salazar G, et al.2008. AGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT-independent photoperiod pathway[J]. The Plant Journal, 55(2): 253-265. [20] Henschel K, Kofuji R, Hasebe M, et al.2002. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens[J]. Molecular Biology and Evolution, 19(6): 801-814. [21] Hu J Y, Zhou Y, He F, et al.2014. miR824-regulated AGAMOUS-LIKE16 contributes to flowering time repression in Arabidopsis[J]. The Plant Cell, 26(5): 2024-2037. [22] Hu Y, Liang W, Yin C, et al.2015. Interactions of OsMADS1 with floral homeotic genes in rice flower development[J]. Molecular Plant, 8(9): 1366-1384. [23] Huang S J, Liang Z H, Chen S, et al.2019. A transcription factor, OsMADS57, regulates long-distance nitrate transport and root elongation[J]. Plant Physiology, 180(2): 882-895. [24] Jiao X M, Wang H C, Yan J J, et al.2020. Promotion of BR biosynthesis by miR444 is required for ammonium-triggered inhibition of root growth[J]. Plant Physiology, 182(3): 1454-1466. [25] Kim J, Jung J H, Reyes J L, et al.2005. microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems[J]. The Plant Journal, 42(1): 84-94. [26] Kutter C, Schob H, Stadler M, et al.2007. MicroRNA-mediated regulation of stomatal development in Arabidopsis[J]. The Plant Cell, 19(8): 2417-2429. [27] Li N, Xu R, Duan P, et al.2018. Control of grain size in rice[J]. Plant Reproduction, 31(3): 237-251. [28] Li Y F, Zheng Y, Addo-Quaye C, et al.2010. Transcriptome-wide identification of microRNA targets in rice[J]. The Plant Journal, 62(5): 742-759. [29] Lin J H, Yu L H, Xiang C B.2020. ARABIDOPSIS NITRATE REGULATED 1 acts as a negative modulator of seed germination by activating ABI3 expression[J]. New Physiologist, 225(2): 835-847. [30] Lu C, Jeong D H, Kulkarni K, et al.2008. Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs)[J]. Proceedings of the National Academy of Sciences of the USA, 105(12): 4951-4956. [31] Lu S J, Wei H, Wang Y, et al.2012. Overexpression of a transcription factor OsMADS15 modifies plant architecture and flowering time in rice (Oryza sativa L.)[J]. Plant Molecular Biology Reporter, 30(6): 1461-1469. [32] Ng M, Yanofsky M F.2001. Function and evolution of the plant MADS-box gene family[J]. Nature Reviews. Genetics, 2(3): 186-195. [33] Parenicová L, de Folter S, Kieffer M, et al.2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS world[J]. The Plant Cell, 15(7): 1538-1551 [34] Puig J, Meynard D, Khong G N, et al.2013. Analysis of the expression of the AGL17-like clade of MADS-box transcription factors in rice[J]. Gene Expression Patterns, 13(5-6): 160-170. [35] Reinhart B J, Weinstein E G, Rhoades M W, et al.2002. MicroRNAs in plants[J]. Gene Delopementent, 16(13): 1616-1626. [36] Riechmann J L, Meyerowitz E M.1997. MADS domain proteins in plant development[J]. Biological Chemistry, 378(10): 1079-1101. [37] Rounsley S D, Ditta G S, Yanofsky M F.1995. Diverse roles for MADS box genes in Arabidopsis development[J]. The Plant Cell, 7(8): 1259-1269. [38] Sasani S T, Soltani B M, Mehrabi R, et al.2020. Expression alteration of candidate rice MiRNAs in response to sheath blight disease[J]. Iranian Journal of Biotechnology, 18(4): e2451. [39] Shahzad R, Harlina P W, Ayaad M, et al.2018. Dynamic roles of microRNAs in nutrient acquisition and plant adaptation under nutrient stress: A review[J]. Plant Omics, 11(1): 58-79. [40] Shin S Y, Jeong J S, Lim J Y, et al.2018. Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies[J]. BMC Genomics, 19(1): 532. [41] Su J, Chen C, Kohalmi S E, et al.2020. Evidence that AGL17 is a significant downstream target of CLF in floral transition control[J]. Plant Signaling & Behavior, 15(7): 1766851. [42] Sunkar R, Girke T, Jain P K, et al.2005. Cloning and characterization of microRNAs from rice[J]. The Plant Cell, 17(5): 1397-1411 [43] Theissen G, Kim J T, Saedler H.1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes[J]. Journal of Molecular Evolution, 43(5): 484-516. [44] Wang H C, Jiao X M, Kong X Y, et al.2016a. A signaling cascade from miR444 to RDR1 in rice antiviral RNA silencing pathway[J]. Plant Physiologist, 170(4): 2365-2377. [45] Wang S, Ren X, Huang B, et al.2016b. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots[J]. Scientific Reports, 6: 30079. [46] Wu D, Liang W, Zhu W, et al.2018. Loss of LOFSEP transcription factor function converts spikelet to leaf-like structures in rice[J]. Plant Physiology, 176(2): 1646-1664. [47] Wu L, Zhang Q, Zhou H, et al.2009. Rice microRNA effector complexes and targets[J]. The Plant Cell, 21(11): 3421-3435. [48] Xu N, Chu Y L, Chen H L, et al.2018. Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging[J]. PLoS Genetics, 14(10): e1007662. [49] Yan Y, Wang H, Hamera S, et al.2014. miR444a has multiple functions in the rice nitrate-signaling pathway[J]. The Plant Journal, 78(1): 44-55. [50] Yu C Y, Liu Y H, Zhang A D, et al.2015. MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice[J]. PLOS ONE, 10(8): e0135196. [51] Yu L H, Miao Z Q, Qi G F, et al.2014a. MADS-Box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals[J]. Molecular Plant, 7(11): 1653-1669. [52] Yu C, Su S, Xu Y, et al.2014b. The effects of fluctuations in the nutrient supply on the expression of five members of the AGL17 clade of MADS-Box genes in rice[J]. PLOS ONE, 9(8): e105597. [53] Yu L H, Wu J, Zhang Z S, et al.2017. Arabidopsis MADS-box transcription factor AGL21 acts as environmental surveillance for seed germination by regulating ABI5 expression[J]. Molecular Plant, 10(6): 834-845. [54] Zhang G P, Xu N, Chen H L, et al.2018. OsMADS25 regulates root system development via auxin signaling in rice[J]. The Plant Journal, 95(6): 1004-1022. [55] Zhang H, Forde B G.1998. An Arabidopsis MADS box gene that controls nutrient induced changes in root architecture[J]. Science, 16(5349): 407-409. [56] Zhao P X, Miao Z Q, Zhang J, et al.2020. Arabidopsis MADS-box factor AGL16 negatively regulates drought resistance via stomatal density and stomatal movement[J]. Journal of Experimental Botany, 71(19): 6092-6106. [57] Zhao P X, Zhang J, Chen S Y, et al.2021. Arabidopsis MADS-box factor AGL16 is a negative regulator of plant response to salt stress by downregulating salt-responsive genes[J]. New Phytologist, 232(6): 2418-2439. |
|
|
|