|
|
Cloning and Expression Characteristics Analysis of GbHCT13 Gene in Gossypium barbadense |
TENG Lu, ZHENG Kai, QU Yan-Ying, LEI Hui-Chen, CAI Yong-Sheng, CHEN Quan-Jia* |
College of Agricultural/Key Laboratory of Agricultural Biological Technology, Xinjiang Agricultural University, Urumqi 830052, China |
|
|
Abstract Shikimate quinate hydroxycinnamoyl transferase (HCT) is one of the key enzyme in lignin synthesis pathway, also affected the quality of cotton (Gossypium spp.) fiber. The study on the expression characteristics of GbHCT13 in cotton fiber development can provide a reference for exploring the mechanism of cotton fiber quality development in the future. HCT gene involved in lignin metabolism named GbHCT13 was cloned from the fiber (10 d) in Gossypium barbadense 'XH21'. Bioinformatics analysis was carried out on its sequence.The expression patterns and characteristics were analyzed in G. barbadense and G. hirsutum by qRT-PCR, respectively. Effects of caffeoyl coenzyme A on fiber development were studied by in vitro feeding experiment of cotton ovule. These results showed that GbHCT13 gene (GenBank No. MW048849) was located on the Gossypium barbadense chromosome 10 of group D, the total length was 1 400 bp, CDS coding region was 1 311 bp, predicted that the proteins encoded by this gene were a class of hydrophilic non-membrane proteins, consisting of 1~432 amino acids, and the multi-sequence comparison from other species revealed that the amino acid sequence of GbHCT13 contained a BAHD acyltransferase family of HXXXD and DFGWG regions, which were closely related to Gossypium arboreum and Gossypium raimondii. Using qRT-PCR analysis GbHCT13 gene expressed in different cotton varieties , the results showed that the gene expression in different Gossypium barbadense varieties were similar trends. The expression level was higher at 5~15 d in the early stage of fiber development, especially at the 10 d of fiber development. In vitro feeding of ovule showed that certain concentration of caffeoyl coenzyme A promoted fiber elongation and the expression of GbHCT13 gene. This study provides the theoretical basis for the future study of the molecular mechanism of GbHCT13 gene involved in lignin synthesis.
|
Received: 16 September 2020
|
|
Corresponding Authors:
* chqjia@126.com
|
|
|
|
[1] 曹彩荣. 2019. 植物木质素合成调控及基因工程研究进展[J]. 现代农业科技, (19): 4-13. (Cao C R. 2019. Advances in plant lignin synthesis regulation and genetic engineering[J]. Modern Agricultural Technology, (19): 4-13.) [2] 曹双瑜, 胡文冉, 范玲. 2012. 发育中棉纤维硫酸木质素含量的动态变化[J]. 新疆农业科学, 49(07): 1184-1189. (Cao S Y, Hu W R, Fan L.2012. The dynamic change of klason lignin contents during cotton fiber development[J]. Xinjiang Agricultural Science, 49(07): 1184-1189.) [3] 崔雪, 加得拉·吐留汗, 于月华, 等. 2016. 海岛棉GbHCT基因克隆及生物信息学分析[J]. 生物技术通报, 32(04): 80-86. (Cui X, Jiadela T L H,Yu Y H, et al.2016. Gene cloning and bioinformatics analysis of Gossypium barbadense GbHCT[J]. Biotechnology Bulletin, 32(04): 80-86.) [4] 范玲. 2010. 一种确立棉花纤维中木质素含量和纤维品质相关关系的方法[P]. 中国, 201010143263. (Fan L.2010. A type of wood found in cotton fibers element quantity and dimensions quality related customs of the method[ P]. China, 201010143263) [5] 加得拉·吐留汗, 倪志勇, 邱迎风, 等. 2017. 海岛棉GbHCT基因的表达分析[J]. 西北农业学报, 26(6): 849-854. (Jiadela·T, Ni Z Y, Qiu Y F, et al.2017. expression analysis of GbHCT gene in Gossypium barbadense[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 26(6): 849-854.) [6] 李天真, 周威, 殷华, 等. 2018. 苦碟子中对香豆酰转移酶基因克隆分析与功能验证[J]. 生物技术通报, 34(11): 126-132. (Li T Z, Zhou W, Yin H, et al.2018. Genetic cloning and functional verification of hydroxycinnamoyltransferase in Ixeris sonchifolia Hance[J]. Biotechnology Bulletin, 34(11): 126-132.) [7] 李洋, 唐雪冰, 李晓峰, 等. 2016. NtC3H基因对烟草类黄酮及绿原酸合成的影响[J]. 中国烟草科学, 37(1): 8-13. (Li Y, Tang X B, Li X F, et al.2016. The influence of NtC3H on the synthesis of flavonoids and chlorogenic acid in tobacco[J]. Chinese Tobacco Science, 37(1): 8-13.) [8] 刘伟, 李高, 杨杞, 等. 2014. 柠条锦鸡儿HCT基因克隆及序列分析[J]. 内蒙古农业大学学报 (自然科学版), 35(01): 77-82. (Li W, Li G, Yang Q, et al.2014.Cloning and sequence analysis of HCT gene in Caragana korshinskii KOM[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 35(01): 77-82.) [9] 王力, 吴庆君. 2019.中国棉花进口安全问题再探究[J].价格月刊, (07): 60-67. (Wang L, Wu Q J. 2019. Further study of China's cotton im port safety[J]. Price Monthly, (07): 60-67.) [10] 王雅清, 曹静, 崔克明. 2001. 木质部细胞分化的研究进展[J].植物学通报, 18(04): 402-410. (Wang Y Q, Cao J, Cui K M.2001. Progress in the differentiation of xylem cells[J]. Botanical Bulletin, 18(04): 402-410.) [11] 魏丽. 2016. 茶树中奎尼酸/莽草酸-羟肉桂酰基转移酶基因的克隆及功能研究[J]. 河南农业科学, 45(10): 35-39. (Wei L.2016. Cloning and function analysis of hydroxycinnamoyl-CoA quinate/shikimatehydroxycinnamoyl transferase gene in Camellia sinensis[J]. Journal of Henan Agricultural Science, 45(10): 35-39.) [12] 肖向文, 朱奇朗, 刘海峰, 等. 2014. 棉花莽草酸/奎宁酸羟基肉桂酰转移酶基因(GhHCT)的克隆、生物信息学分析及表达特性[J]. 农业生物技术学报, 22(05): 572-579. (Xiao X W, Zhu Q L, Liu H F, et al.2014. Cloning, bioinformatics analysis and expression characteristic of shikimate/quinate hydroxycinnamoyl transferase gene(GhHCT) in cotton (Gossypium hirsutum L.)[J]. Journal of Agricultural Biotechnology, 22(05): 572-579.) [13] 谢素霞, 程琳, 曾威. 2013.茶树HCT基因的克隆及表达[J].东北林业大学学报, (6): 19-22. (Xie S X, Cheng L, Zeng W. 2013. Cloning and expression of HCT gene in tea tree[J]. Journal of Northeast Forestry University, (6): 19-22.) [14] 喻树迅. 2007. 棉花纤维品质功能基因组学研究与分子改良研究进展[J]. 中国基础科学, 40(04): 18-21. (Yu S X.2007. Advances in molecular improvement and functional genomic approaches in the cotton fiber qulity[J]. China Basic Science, 40(04): 18-21.) [15] Aymerick E, Jose H, Pereira S Y, et al.2016. Exploiting the substrate promiscuity of hydroxycinnamoyl-CoA: Shikimate hydroxycinnamoyl transferase to reduce lignin[J]. Plant & Cell physiology, 57(3): 568-579. [16] Basra A S, Malik C P .1984. Development of the cotton fiber[J]. International Review of Cytology, 89(6): 65-113. [17] Beasley C A .1973. Hormonal regulation of growth in unfertilized cotton ovules[J]. Science, 179(4077): 1003-1005. [18] Beasley C A, Birnbaum E H, Dugger W M, et al.1974. A quantitative procedure for estimating cotton fiber growth[J]. Stain Technology, 49(2): 85-92. [19] Chen F, Marry S, Srinivasa R, et al.2006. Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.)[J]. The Plant Journal, 48(1): 113-124. [20] Chowdhury E M, Choi B S, Park S U, et al.2012.Transcriptional analysis of hydroxycinnamoyl transferase (HCT) in various tissues of Hibiscus cannabinus in response to abiotic stress conditions[J]. Plant Omics Journal, 5(3): 305-313. [21] Eudes A, Pereira J H, Yogiswara S, et al.2016. Exploiting the substrate promiscuity of hydroxycinnamoyl-CoA: Shikimate hydroxycinnamoyl transferase to reduce lignin[J]. Plant and Cell Physiology, 57(3): 568-579. [22] Fan L, Shi J, Hu X,et al.2009. Molecular and biochemical evidence for phenylpropanoid synthesis and presence of wall-linked phenolics in cotton fibers[J]. Journal of Integrative Plant Biology, 51(7): 626-637. [23] Hoffmann L,Besseau S, Geoffroy P, et al.2004. Silencing of hydroxycinnamoy-coenzymeashikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis[J]. Plant Cell, 16( 6): 1446-1465. [24] Jasdanwala R T, Singh Y D, Chinoy J J.1977. Chinoy J. Auxin metabolism in developing cotton hairs[J]. Journal of Experimental Botany, 28(5): 1111-1116. [25] Li X, Weng J K, Chapple C.2008. Improvement of biomass through lignin modification[J].The Plant Journal, 54(4): 569-58. [26] Waterkeyn L, Langhe E D, Eid A.1975. In vitro culture of fertilized cotton ovules .Ⅱ. Growth and differentiation of cotton fiber[J]. Cellule, 42-51. [27] Ryser U.1985.Cell wall biosynthesis in differentiating cotton fibers[J]. European Journal of Cell Biology, 39: 236-256. [28] Ting I P, Beasley C A.1973.The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules[J]. American Journal of Botany, 60(2): 130-139. |
[1] |
ZHANG Ya-Ru, REN Jing, ZHANG Wei-Tao, WANG Shu-Xiang, WANG Shuo, MA Fei-Yu, LI Shu-Na, LI Hong-Ya. Screening, Identification and Lignin-degradation Characteristics of Bacillus amyloliquefaciens MN-13[J]. 农业生物技术学报, 2021, 29(7): 1389-1399. |
|
|
|
|