Research Progress and Application of Biomolecular Sensing Technology for Pathogens Diagnosis in Sustainable Agriculture
ZHANG Can, LU Hui-Xin, HUANG Yu-Dong, SUN Kai*, YU Xiao-Ping*
Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
Abstract:Plant diseases are caused by pathogenic microorganisms, such as bacteria, fungi and viruses, which seriously limit crop productivity and increase economic losses. With the development of sustainable agriculture, the accuracy, sensitivity, operability and portability of pathogen rapid detection technologies are the urgent need for agricultural producers. With the multidisciplinary fusion of biotechnology, material science and other cutting-edge technologies, new biosensors are developing towards miniaturization, high sensitivity, real-time detection and gradually plays an important role in the study of plant pathogens. In this review, the recent advancement in the development of advantageous biosensing systems for plant pathogen detection based on both nucleic acid and protein identification is reviewed. The current development status of nucleic acid based biosensors using nano materials, glassy carbon electrode, and nano chips, and protein based biosensors using enzymes, antibodies and aptamers are summarized. The practical application of real-time detection of plant pathogens using these sensors are prospected. This article provides reference and promotion for further research of biomolecular sensing techniques in the field of agricultural plant protection.
[1] 路惠馨, 孙凯, 尹传林, 等. 2021. 纳米孔测序技术在植物病原检测中的应用与展望[J]. 农业生物技术学报, 29(9): 1817-1824. (Lu H X, Sun K, Yin C L, et al.2021. Application and prospect of nanopore sequencing technology in plant pathogen detection[J]. Journal of Agricultural Biotechnology, 29(9): 1817-1824.) [2] 马骉, 吴莹莹, 戴明雁, 等. 2016. 副溶血性弧菌PMA-LAMP方法的建立[J]. 现代食品科技, 32(7): 205-213. (Ma B, Wu Y Y, Dai M Y, et al.2016. Development of loop-mediated isothermal amplification (LAMP) assay based on propidium monoazide (PMA) for Detecting Vibrio parahaemolyticus[J]. Modern Food Science and Technology, 32(7): 205-213.) [3] 周桓, 邵艳娜, 王涓, 等. 2021. 基于CRISPR/Cas技术的核酸检测研究进展[J]. 微生物学报, 61(12): 3856-3869. (Zhou H, Shao Y N, Wang J, et al.2021. Research progress of nucleic acid detection based on CRISPR/Cas technology[J]. Acta Microbiologica Sinica, 61(12): 3856-3869.) [4] Abeyrathne B.2018. Development and evaluation of a paper based biochemical sensor for realtime detection of food pathogen[OL]. Bachelor project, Asian Institute of Technology, School of Environment, Resources and Development, Thailand. DOI:10.13140/RG.2.2.29480.62726. [5] Ali Q, Ahmar S, Sohail M A, et al.2021. Research advances and applications of biosensing technology for the diagnosis of pathogens in sustainable agriculture[J]. Environmental Science and Pollution Research International, 28(8): 9002-9019. [6] Altschuh D, Dubs M C, Weiss E, et al.1992. Determination of kinetic constants for the interaction between a monoclonal antibody and peptides using surface plasmon resonance[J]. Biochemistry, 31(27): 6298-6304. [7] Azek F, Grossiord C, Joannes M, et al.2000. Hybridization assay at a disposable electrochemical biosensor for the attomole detection of amplified human cytomegalovirus DNA[J]. Analytical Biochemistry. 284(1): 107-113. [8] Boonham N, Tomlinson J, Mumford R.2007. Microarrays for rapid identification of plant viruses[J]. The Annual Review of Phytopathology, 45: 307-328. [9] Bukhamsin A, Moussi K, Tao R, et al.2021. Robust, long-term, and exceptionally sensitive microneedle-based bioimpedance sensor for precision farming[J]. Advance Science, 8(16): 1261-1273. [10] Cecchini F, Manzano M, Mandabi Y, et al.2012. Chemiluminescent DNA optical fibre sensor for Brettanomyces bruxellensis detection[J]. Journal of Biotechnology, 157(1): 25-30. [11] Charlermroj R, Himananto O, Seepiban C, et al.2013. Multiplex detection of plant pathogens using a microsphere immunoassay technology[J]. Public Library of Science, 8(4): e62344. [12] Chen H, Heng C K, Puiu P D, et al.2005. Detection of Saccharomyces cerevisiae immobilized on self-assembled monolayer (SAM) of alkanethiolate using electrochemical impedance spectroscopy[J]. Analytica Chimica Acta, 554(1-2): 52-59. [13] Chen J Y, Penn L S, Xi J.2018a. Quartz crystal microbalance: Sensing cell-substrate adhesion and beyond[J]. Biosensors and Bioelectronics, 99: 593-602. [14] Chen Y, Wang Z, Liu Y, et al.2018b. Recent advances in rapid pathogen detection method based on biosensors[J]. European Journal of Clinical Microbiology and Infectious Diseases, 37(6): 1021-1037. [15] Clark L C, Lyons C.1962. Electrode systems for continuous monitoring in cardiovascular surgery[J]. Electrode Systems, 36: 29-45. [16] Curie J, Curie P.1880. Development par compression de l’etricite polaire das les cristaux hemledres a faces inclines[J]. Bulletin de la Societee Minearalogique de France, 3(4): 90-93. [17] Daly P, Collier T, Doyle S.2002. PCR-ELISA detection of Escherichia coli in milk[J]. Letters in Applied Microbiology, 34: 222-226. [18] Dickert F L, Hayden G.2002. Dickert FL, Hayden O. 2002. Bioimprinting of polymers and sol-gel phases. Selective detection of yeasts with imprinted polymers[J]. Analytical Chemistry, 74: 1302-1306. [19] Dong Y, Xu Y, Yong W, et al.2014. Aptamer and its potential applications for food safety[J]. Critical Reviews in Food Science and Nutrition, 54(12): 1548-1561. [20] Drygin Y F, Blintsov A N, Grigorenko V G, et al.2012. Highly sensitive field test lateral flow immunodiagnostics of PVX infection[J]. Applied Microbiology and Biotechnology, 93(1): 179-189. [21] Ellington A D, Szostak J W.1990. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 346(6287): 818-822. [22] Engvall E, Perlmann P.1971. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G[J]. Immunochemistry, 8(9): 871-874. [23] Fang Y, Ramasamy R P.2015. Current and prospective methods for plant disease detection[J]. Biosensors, 5(3): 537-561. [24] Fellers J P, Webb C, Fellers M C, et al.2019. Wheat virus identification within infected tissue using nanopore sequencing technology[J]. Plant Disease, 103(9): 2199-2203. [25] Filloux D, Fernandez E, Loire E, et al.2018. Nanopore-based detection and characterization of yam viruses[J]. Scientific Reports, 8(1): 17879-17889. [26] Fisher M C, Henk D A, Briggs C J, et al.2012. Emerging fungal threats to animal, plant and ecosystem health[J]. Nature, 484(7393): 186-194. [27] Fountas S, Mylonas N, Malounas I, et al.2020. Agricultural robotics for field operations[J]. Sensors, 20(9): 2672-2698. [28] Ge C, You W, Li R, et al.2021. Construction of the PG-deficient mutant of Fusarium equiseti by CRISPR/Cas9 and its pathogenicity of pitaya[J]. Journal of Basic Microbiology, 61(8): 686-696. [29] Gong L, Kuai H, Ren S, et al.2015. Ag nanocluster-based label-free catalytic and molecular beacons for amplified biosensing[J]. Chemical Communications, 51(60): 12095-12098. [30] Goodridge L, Chen J, Griffiths M.1999. The use of a fluorescent bacteriophage assay for detection of Escherichia coli O157: H7 in inoculated ground beef and raw milk[J]. International Journal of Food Microbiology, 47: 43-50. [31] Ito T, Hosokawa K, Maeda M.2007. Detection of single-base mismatch at distal end of DNA duplex by electrochemical impedance spectroscopy[J]. Biosensors & Bioelectronics, 22(8): 1816-1819. [32] Jarocka U, Radecka H, Malinowski T, et al.2013. Detection of Prunus necrotic ringspot virus in plant extracts with impedimetric immunosensor based on glassy carbon electrode[J]. Electroanalysis, 25(2): 433-438. [33] Jiao K, Sun W, Zhang S, et al.2000a. Application of p-phenylenediamine as an electrochemical substrate in peroxidase-mediated voltammetric enzyme immunoassay[J]. Analytica Chimica Acta, 413(1-2): 71-78. [34] Jiao K, Sun W, Zhang S.2000b. Sensitive detection of a plant virus by electrochemical enzyme-linked immunoassay[J]. Fresenius Journal of Analytical Chemistry, 367: 667-671. [35] Kattke M D, Gao E J, Sapsford K E, et al.2011. FRET-based quantum dot immunoassay for rapid and sensitive detection of Aspergillus amstelodami[J]. Sensors, 11(6): 6396-6410. [36] Khater M, de la Escosura-Muniz A, Merkoci A.2017. Biosensors for plant pathogen detection[J]. Biosensors & Bioelectronics, 93: 72-86. [37] Khedri M, Ramezani M, Rafatpanah H, et al.2018. Detection of foodborne allergens with aptamer-based biosensors[J]. Trends in Analytical Chemistry, 103: 126-136. [38] Kim Y S, Raston N H, Gu M B.2016. Aptamer-based nanobiosensors[J]. Biosensors & Bioelectronics, 76: 2-19. [39] Lautner G, Balogh Z, Bardoczy V, et al.2010. Aptamer-based biochips for label-free detection of plant virus coat proteins by SPR imaging[J]. Analyst, 135(5): 918-926. [40] Lee H Y, Jung H S, Fujikawa K, et al.2005. New antibody immobilization method via functional liposome layer for specific protein assays[J]. Biosensors and Bioelectronics, 21(5): 833-838. [41] Li J J, Chu Y, Lee B Y, et al.2008. Enzymatic signal amplification of molecular beacons for sensitive DNA detection[J]. Nucleic Acids Research, 36-53(6): e36. [42] Li Y, Li S, Wang J, et al.2019a. CRISPR/Cas systems towards next-generation biosensing[J]. Trends in Biotechnology, 37(7): 730-743. [43] Li Y, Mansour H, Wang T, et al.2019b. Naked-eye detection of grapevine red-blotch viral infection using[J]. Analytical Chemistry, 91(18): 11510-11513. [44] Lin H Y, Huang C H, Lu S H, et al.2014. Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor[J]. Biosensors & Bioelectronics, 51: 371-378. [45] Makarova K S, Haft D H, Barrangou R, et al.2011. Evolution and classification of the CRISPR-Cas systems[J]. Nature Reviews Microbiology, 9(6): 467-477. [46] Malecka K, Michalczuk L, Radecka H, et al.2014. Ion-channel genosensor for the detection of specific DNA sequences derived from Plum pox virus in plant extracts[J]. Sensors, 14(10): 18611-18624. [47] Masdor N A, Altintas Z, Shukor M Y, et al.2019. Subtractive inhibition assay for the detection of Campylobacter jejuni in chicken samples using surface plasmon resonance[J]. Scientific Reports, 9(1): 13642-13651. [48] Mendes R K, Carvalhal R F, Stach-Machado D R, et al.2009. Surface plasmon resonance immunosensor for early diagnosis of Asian rust on soybean leaves[J]. Biosensors and Bioelectronics, 24: 2483-2487. [49] Miranda B S, Linares E M, Thalhammer S, et al.2013. Development of a disposable and highly sensitive paper-based immunosensor for early diagnosis of Asian soybean rust[J]. Biosensors & Bioelectronics, 45: 123-128. [50] Mudgal N, Yupapin P, Ali J, et al.2020. BaTiO3-graphene-affinity layer-based surface plasmon resonance (SPR) biosensor for Pseudomonas bacterial detection[J]. Plasmonics, 15(5): 1221-1229. [51] Naito F Y B, Melo F L, Fonseca M E N, et al.2019. Nanopore sequencing of a novel bipartite New world begomovirus infecting cowpea[J]. Archives of Virology, 164(7): 1907-1910. [52] Noi K, Iijima M, Kuroda S i, et al.2019. Ultrahigh-sensitive wireless QCM with bio-nanocapsules[J]. Sensors and Actuators B: Chemical, 293: 59-62. [53] Oh S Y, Heo N S, Shukla S, et al.2017. Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat[J]. Scientific Reports, 7(1): 10130-10139. [54] Papadakis G, Skandalis N, Dimopoulou A, et al.2015. Bacteria Murmur: Application of an acoustic biosensor for plant pathogen detection[J]. Public Library of Science, 10(7): e0132773. [55] Richter M M.2004. Electrochemiluminescence (ECL)[J]. Chemical Reviews, 104(6): 3003-3036. [56] Shi X, Wen J, Li Y, et al.2014. DNA molecular beacon-based plastic biochip: A versatile and sensitive scanometric detection platform[J]. ACS Applied Materials & Interfaces, 6(24): 21788-21797. [57] Siddiquee S, Rovina K, Yusof N A, et al.2014. Nanoparticle-enhanced electrochemical biosensor with DNA immobilization and hybridization of Trichoderma harzianum gene[J]. Sensing and Bio-Sensing Research, 2: 16-22. [58] Skottrup P D, Nicolaisen M, Justesen A F.2008. Towards on-site pathogen detection using antibody-based sensors[J]. Biosensors & Bioelectronics, 24(3): 339-348. [59] Suprun E V.2021. Direct electrochemistry of proteins and nucleic acids: The focus on 3D structure[J]. Electrochemistry Communications, 125: 106983. [60] Tang Y B, Xing D, Zhu D B, et al.2007. An improved electrochemiluminescence polymerase chain reaction method for highly sensitive detection of plant viruses[J]. Analytica Chimica Acta, 582(2): 275-280. [61] Tuerk C, Gold L.1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 249(4968): 505-510. [62] Wang L, Li P C.2010. Optimization of a microfluidic microarray device for the fast discrimination of fungal pathogenic DNA[J]. Analytical Biochemistry, 400(2): 282-288. [63] Wei J, Liu H, Liu F, et al.2014. Miniaturized paper-based gene sensor for rapid and sensitive identification of contagious plant virus[J]. ACS Applied Materials & Interfaces, 6(24): 22577-22584. [64] Wen T, Sang M, Wang M, et al.2021. Rapid detection of d-limonene emanating from citrus infestation by Bactrocera dorsalis (Hendel) using a developed gas-sensing system based on QCM sensors coated with ethyl cellulose[J]. Sensors and Actuators B: Chemical, 328: 129048. [65] Wongkaew P, Poosittisak S.2014. Diagnosis of sugarcane white leaf disease using the highly sensitive DNA based voltammetric electrochemical determination[J]. American Journal of Plant Sciences, 5(15): 2256-2268. [66] Xiao M S, Chandrasekaran A.R., Wei J, et al.2018. Affinity-modulated molecular beacons on MoS2 nanosheets for MicroRNA detection[J]. ACS Applied Materials & Interfaces, 10: 35794-35800. [67] Yamamoto R, Kumar P K.2000. Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1[J]. Genes to Cells, 5: 389-396. [68] Zhang Q, Men X, Hui C, et al.2021. Wheat yield losses from pests and pathogens in China[J]. Agriculture, Ecosystems & Environment, 326: 107821. [69] Zhang X B, Wang Z, Xing H, et al.2010. Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity[J]. Analytical Chemistry, 82: 5005-5011. [70] Zhao W, Lu J, Ma W, et al.2011. Rapid on-site detection of Acidovorax avenae subsp. citrulli by gold-labeled DNA strip sensor[J]. Biosensors & Bioelectronics, 26(10): 4241-4244. [71] Zhao Y, Liu L, Kong D, et al.2014. Dual amplified electrochemical immunosensor for highly sensitive detection of Pantoea stewartii sbusp. stewartii[J]. Applied Materials & Interfaces, 6(23): 21178-21183.