Abstract:Salinity is an important environmental factor affecting the growth and survival of crustaceans. The red claw crayfish (Cherax quadricarinatus) is a freshwater species. To increase the waters available for cultivating this species, saline waters and brackish waters may be potential waters for cultivating this species. Thus, understanding the osmotic regulation mechanism of the red claw crayfish is needed to provide a theoretical basis for farming feasibility in brackish water and improve the flavor by changing the growth environment (temporary culture in brackish water). In this study, 3 genes related to osmolality, Na+/K+-ATPase (NKA), Na+-K+-2Cl--Cotransporter (NKCC) and 14-3-3, were screened by the NCBI published transcriptome database of C. quadricarinatus, and their ORF regions were confirmed by RT-PCR. The protein structure was predicted using an online bioinformatics website, and the homologous protein sequences of different species were subjected to multiple sequence alignment and evolutionary tree construction. The expression of NKA, NKCC and 14-3-3 in different tissues and the changes of expression in gill and hepatopancreas after 24, 48 and 96 h under different salinity in the red claw crayfish were analyzed by qPCR. The results showed that NKA, NKCC and 14-3-3 proteins were highly conserved among different species. NKA, NKCC and 14-3-3 genes were expressed in the gill, muscle, heart, hepatopancreas and eyestalk tissues of red claw crayfish. Under different salinity stresses, the expression of the NKA gene in gill tissues did not change significantly at 5‰ and 10‰ salinity but increased significantly in 15‰ and 20‰ salinity groups at 48 h (P<0.05). In the hepatopancreas, the expression of NKA gene was only significantly increased in the 20‰ salinity group at 48 h (P<0.05). The expression of NKCC gene in gill tissue was significantly up regulated in 10‰, 15‰ and 20‰ salinity groups at 24, 48 and 96 h, and only significantly increased in 15‰ and 20‰ salinity groups at 48 h in hepatopancreas. The expression of the 14-3-3 gene was significantly up regulated in gill tissue in 10‰, 15‰ and 20‰ salinity groups at 48 h (P<0.05), and significantly up regulated in hepatopancreas in 5‰, 10‰ and 15‰ salinity groups at 48 h (P<0.05) and the expression significantly up regulated at 24 and 48 h in 20‰ salinity group (P<0.05). The results showed that the expression of NKA, NKCC and 14-3-3 genes was related to the change of salinity. 20‰ salinity stress after 48 h may be the key point of osmotic regulation of gill and hepatopancreas under high salinity. This study provides a reference for further exploring the role of NKA, NKCC and 14-3-3 genes in the osmoregulatory mechanism of the red claw crayfish.
彭博浩, 张炎, 刘畅, 钟箫, 付德政, 张凯怡, 王艺磊. 红螯光壳螯虾渗透压相关基因的克隆及其在不同盐度下的表达[J]. 农业生物技术学报, 2022, 30(11): 2187-2200.
PENG Bo-Hao, ZHANG Yan, LIU Chang, ZHONG Xiao, FU De-Zheng, ZHANG Kai-Yi, WANG Yi-Lei. Cloning of Osmotic Pressure-related Genes from Cherax quadricarinatus and Their Expression Under Different Salinity. 农业生物技术学报, 2022, 30(11): 2187-2200.
[1] 关颖, Galvez Fernando, 张国霞, 等. 2016. 低盐胁迫对大底鳉(Fundulus grandis)血浆渗透压、鳃上皮细胞形态和通道蛋白mRNA表达的影响[J]. 生态科学, 35(05): 43-49. (Guan Y, Galvez F, Zhang G X, et al.2016. Effects of hypoosmotic challenges on plasma osmolality, the morphology of gill epithelia and mRNA expression of branchial transporters in Fundulus grandis[J]. Ecological Science, 35(05): 43-49.) [2] 黄有辉. 2021. 盐度对日本沼虾生长生理的影响[D]. 博士学位论文, 华东师范大学, 导师: 赵云龙. pp. 9-13. (Huang Y H.2021. Effects of salinity on growth and physiologvof oriental riverprawn, Macrobrachium nipponense[D]. Thesis for Ph.D., East China Normal University, Supervisor: Zhao Y L, pp. 9-13.) [3] 林李泉, 刘明珠, 林国荣, 等. 2021. 黑鲷NKCC1分子特征及其对急性盐度胁迫的表达响应[J]. 广西科学院学报, 37(02): 133-143. (Lin L Q, Liu M Z, Lin G R, et al.2021. Molecular characteristics of NKCC1 in black sea bream Acanthopagrus schlegelii and its ex-pression in response to acutesalinity stress[J]. Journal of Guangxi Academy of Sciences, 37(02): 133-143.) [4] 李娜, 王仁杰, 赵玉超, 等. 2017. 高盐胁迫对凡纳滨对虾生长指标、血浆渗透压及Na+-K+-ATP酶活力的影响[J]. 浙江海洋学院学报(自然科学版), 36(03): 196-201. (Li N, Wang J, Zhao Y C, et al.2017. Effects of high salinity on growth index, plasma osmotic pressure and Na+-K+-ATPase activities of Litopenaeus vannamei[J]. Journal of Zhejiang Ocean University (Natural Science), 36(03): 196-201.) [5] 刘洪涛, 王军, 毛勇, 等. 2016. 日本囊对虾Na-K-2Cl共同转运蛋白基因的克隆与组织表达分析[J]. 厦门大学学报(自然科学版), 55(01): 46-54. (Liu H T, Wang J, Mao Y, et al.2016. Molecular cloning and expression analysis of Na-K-2Cl cotransporter from Marsupenaeus japonicus[J]. Journal of Xiamen University (Natural Science), 55(01): 46-54.) [6] 柳旭东, 王际英, 张利民, 等. 2009. 盐度对水产动物生长代谢与生殖发育相关指标影响的研究[J]. 水产养殖, 30(04): 42-46. (Liu X D, Wang J Y, Zhang L M, et al.2009. Study on the effect of salinity on the related indexes of growth, metabolism and reproductive development of aquatic animals[J]. Journal of Aquaculture, 30(04): 42-46.) [7] 舒妙安, 张龙韬, 徐宾朋, 等. 2012. 拟穴青蟹14-3-3基因全长cDNA的克隆及组织表达分析[J]. 水产学报, 36(08): 1193-1200. (Shu M A, Zhang L T, Xu B P, et al.2009. The full length cDNA cloning and expression profile of 14-3-3 gene from the mud crab (Scylla paramamosain)[J]. Journal of Fisheries of China, 36(08): 1193-1200.) [8] 题兴斌, 吕建建, 宋柳, 等. 2021. 三疣梭子蟹14-3-3基因的克隆及其在低盐和病原胁迫后的表达分析[J]. 渔业科学进展, 42(01): 134-143. (Ti X B, Lv J J, Song L, et al.2021. Cloning and expression analysis of 14-3-3 gene in Portunus trituberculatus after exposure to low salt and pathogenic stress[J]. Progress in Fishery Sciences, 42(01): 134-143.) [9] 王丹青. 2018. 低盐度海水暂养对中华绒螯蟹品质的影响[D]. 硕士学位论文, 上海海洋大学, 导师: 王锡昌. pp. 25-43. (Wang D Q.2018. Effect of low salinity seawater temporary cultivation on quality changes of Chinese mitten crab[D]. Thesis for M.S., Shanghai Ocean University, Supervisor: Wang X C, pp. 25-43.) [10] 王书平, 孔祥会. 2010. 鱼类14-3-3基因家族研究进展[J]. 河南农业科学, 39(10): 138-142. (Wang S P, Kong X H. 2010. Advance of 14-3-3 gene family in fish[J]. Journal of Henan Agricultural Sciences, (10): 138-142.) [11] 王帅, 吴旭干, 陶宁萍, 等. 2015. 盐度调控对中华绒螯蟹肝胰腺主要营养品质的影响[J]. 现代食品科技, 31(12): 318-324. (Wang S, Wu X G, Tao N P, et al.2015. Effects of water salinity on the nutritional quality of Eriocheir sinensis hepatopancreas[J]. Modern Food Science and Technology, 31(12): 318-324.) [12] 王有昆, 刘萍, 李吉涛, 等. 2016. 脊尾白虾14-3-3基因cDNA全长的克隆和表达分析[J]. 中国水产科学, 23(01): 44-52. (Wang Y K, Liu P, Li J T, et al.2016. Cloning and expression analysis of 14-3-3 gene from Exopalaemon carinicauda[J]. Journal of Fishery Sciences of China, 23(01): 44-52.) [13] 文彬, 王小菁. 2004. 14-3-3蛋白研究进展[J]. 生命科学, 16(04): 226-230. (Wen B, Wang X Q. 2004. Advance in 14-3-3 proteins[J]. Chinese Bulletin of Life Sciences, (04): 226-230.) [14] 徐宾朋. 2016. 拟穴青蟹蜕皮周期中离子转运相关基因的研究[D]. 博士学位论文, 浙江大学, 导师: 邵庆均, 舒妙安. pp: 71-86. (Xu B P.2016. The functional study of the ions transport related molecules in Scylla paramamosain during the molt cycle[D] Thesis for Ph.D., Zhejiang University, Supervisor: Shao Q J, Shu M A. pp. 71-86.) [15] 赵丽慧, 赵金良, Thammaratsuntorn Jeerawat, 等. 2014. 盐碱胁迫对尼罗罗非鱼血清渗透压、离子浓度及离子转运酶基因表达的影响[J]. 水产学报, 38(10): 1696-1704. (Zhao L H, Zhao J L, Thammaratsuntorn J, et al.2014. Effects of salinity-alkalinity on serum osmolality,ion concentration and mRNA expression of ion transport enzymes of Oreochromis niloticus[J]. Journal of Fisheries of China, 38(10): 1696-1704.) [16] 周亚亚, 贺福初, 姜颖. 2011. Na-K-Cl协同转运蛋白研究进展[J]. 现代生物医学进展, 11(15): 2996-3000. (Zhou Y Y, Jia F C, Jiang Y.2011. Advances of Na-K-Cl cotransporter[J]. Progress in Modern Biomedicine, 11(15): 2996-3000.) [17] Brooks S J, Lloyd M C.2006. Gill Na(+), K(+)-ATPase in a series of hyper-regulating gammarid amphipods: Enzyme characterisation and the effects of salinity acclimation[J]. Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology, 144(1): 24-32. [18] Buranajitpirom D, Asuvapongpatana S, Weerachatyanukul W, et al.2010. Adaptation of the black tiger shrimp, Penaeus monodon, to different salinities through an excretory function of the antennal gland[J]. Cell and Tissue Research, 340(3): 481-489. [19] Chongsatja P O, Bourchookarn A, Lo C F, et al.2007. Proteomic analysis of differentially expressed proteins in Penaeus vannamei hemocytes upon Taura syndrome virus infection[J]. Proteomics, 7(19): 3592-3601. [20] Efendiev R, Chen Z, Krmar R T, et al.2005. The 14-3-3 protein translates the Na+,K+-ATPase {alpha}1-subunit phosphorylation signal into binding and activation of phosphoinositide 3-kinase during endocytosis[J]. Journal of Biological Chemistry, 280(16): 16272-16277. [21] Furriel R, Mcnamara J C, Leone F A.2000. Characterization of (Na+, K+)-ATPase in gill micro-somes of the freshwater shrimp Macrobrachium olfersii[J]. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 126(3): 303-315. [22] Gettins P.2002. Serpin structure, mechanism, and function[J]. Chemical Reviews, 102(12): 4751-4803. [23] Jayasundara N, Towle D W, Weihrauch D, et al.2007. Gill-specific transcriptional regulation of Na+/K+-ATPase alpha-subunit in the euryhaline shore crab Pachygrapsus marmoratus: Sequence variants and promoter structure[J]. Journal of Experimental Biology, 210(Pt12): 2070-2081. [24] Moore B W, Perez J V.1967. Specific acidic proteins of the nervous system[J]. Physiological and Biochemical Aspects of Nervous Integration, 1967: 343-359. [25] Simser J A, Palmer A T, Munderloh U G, et al.2001. Isolation of a spotted fever group rickettsia, Rickettsia peacockii, in a Rocky Mountain wood tick, Dermacentor andersoni cell line[J]. Applied and Environmental Microbiology, 67(2): 546-552. [26] Skou J C.1957. The influence of some cations on an adenosine triphosphatase from peripheral nerves[J]. Biochimica et Biophysica Acta, 23(2): 394-401. [27] Towle D W, Weihrauch D.2001. Osmoregulation by gills of euryhaline crabs: Molecular analysis of transporters[J]. American Zoologist, 41(4): 770-780. [28] Yang W, Wu Y, Tang C, et al.2016. Microtubule-dependent changes in morphology and localization of chloride transport proteins in gill mitochondria-rich cells of the tilapia, Oreochromis mossambicus[J]. Journal of Morphology, 277(8): 1113-1122.