Research Progress on Mutton Quality Evaluation Indicators and Important Candidate Genes
LIU Xing1, KONG Yuan-Yuan1, ZHANG Xue-Ying1, LI Fa-Di1,2, LI Wan-Hong1, YUE Xiang-Peng1,*
1 State Key Laboratory of Grassland Agro-ecosystems / Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Grassland Industry, Ministry of Education / College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; 2 Engineering Laboratory of Mutton Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin 733300, China
Abstract:With the improvement of people's living standards, the demand for high-quality lamb is increasing. Meat quality traits such as drip loss, flesh color, marble texture, water power, intramuscular fat content, and muscle fatty acid composition and pH also directly or indirectly affect people's consumption tendency. Because most of the current methods for determining meat quality are carried out after slaughter, it is difficult for conventional breeding methods to quickly and effectively improve the quality of mutton at a low cost. In recent years, breeders have begun to pay attention to the use of molecular biology methods to find candidate genes and molecular markers related to mutton quality, which has opened a new path for accurate and rapid improvement of meat quality. This article reviews the indicators of mutton quality evaluation and important candidate genes related to some indicators, with a view to helping the future genetic improvement and breeding of mutton quality.
刘星, 孔园园, 张雪莹, 李发弟, 李万宏, 乐祥鹏. 羊肉品质评价指标及重要候选基因研究进展[J]. 农业生物技术学报, 2020, 28(10): 1881-1892.
LIU Xing, KONG Yuan-Yuan, ZHANG Xue-Ying, LI Fa-Di, LI Wan-Hong, YUE Xiang-Peng. Research Progress on Mutton Quality Evaluation Indicators and Important Candidate Genes. 农业生物技术学报, 2020, 28(10): 1881-1892.
[1] 陈雪君, 茅慧玲. 2011.湖羊肌肉营养成分组成及风味物质研究[J]. 中国畜牧杂志, 47(11): 69-72. (Chen X J, Mao H L.2011. Study on muscle nutrition composition and flavor substance of Huyang[J]. Chinese Journal of Animal Science, 47(11): 69-72.) [2] 杜琛. 2014. 绒山羊肌内脂肪沉积特征及脂肪细胞分化机理的研究[D]. 博士论文, 内蒙古农业大学, 导师: 李金泉, pp. 86-87. (Du C.2014. Study on the characteristics of intramedullary adipocytes and differentiation mechanism of adipocytes in cashmere goats[D]. Thesis for Ph. D.,Inner Mongolia Agricultural University, supervisor: Li J Q, pp. 86-87.) [3] 冯涛. 2005. 日粮蛋白质水平对舍饲羔羊育肥性能及肉品质影响的研究[D]. 硕士论文,西北农林科技大学, 导师: 陈玉林, pp. 42. (Feng T.2005. Effects of dietary protein level on fattening performance and meat quality of feeder lambs[D]. Thesis for M.S., North West Agriculture and Forestry University, supervisor:Chen Y L, pp. 42.) [4] 谷英, 孙海洲, 桑丹, 等. 2013.肉品质评定指标及影响因素的研究进展[J].中国畜牧兽医, 40(07): 100-106. (Gu Y, Sun H Z, Sang D, et al.2013. Research progress of meat quality evaluation index and its influencing factors[J]. Chinese Animal Husbandry and Veterinary, 40(07): 100-106.) [5] 何凡, 王振宇, 张彩霞, 等. 2018.不同品种羊肉滴水损失与肌肉品质的关系[J]. 中国食品学报, 18(09): 245-253. (He F, Wang Z Y, Zhang C X, et al.2018. Relationship between drip loss and muscle quality of different mutton breeds[J]. Chinese Journal of Food, 18(09): 245-253. ) [6] 赫秋亚, 罗军, 姚大为, 等. 2016.奶山羊ELOVL6基因启动子的克隆及活性区域分析[J]. 农业生物技术学报, 2016(6): 790-798. (He Q Y, Luo J,Yao D W, et al. 2016 . Cloning and analysis of the active region of ELOVL6 gene promoter in dairy goats[J]. Journal of Agricultural Biotechnology, (6): 790-798.) [7] 李俊英. 2005.不同优质鸡品种与隐性白羽肉鸡杂交组合的屠体及肉品质性状分析[D]. 硕士论文, 中国农业大学, 导师: 杨宁. pp. 45. (Li J Y.2005. Analysis of carcasses and meat quality characters of different high quality chicken breeds with recessive white feather broiler [D]. Thesis for M.S., China Agricultural University, supervisor: Yang N, pp. 45.) [8] 卢亚洲. 2009. 绵羊PRKAG3基因的克隆表达及多态性与滩羊肉质品质的关联分析[D]. 硕士论文,中国农业科学院, 导师: 马月辉, pp. 32-33. (Lu Y Z.2009.Clonal expression and polymorphism of PRKAG3 gene in sheep were correlated with meat quality of tan sheep[D]. Thesis for M.S., Chinese Academy of Agricultural Sciences. supervisor: Ma Y H, pp. 32-33.) [9] 栾兆进, 曲绪仙, 贺建宁, 等. 2014.羊肌内脂肪调控研究进展[J]. 家畜生态学报, (9): 8-13. (Luan Z J, Qu X X, He J N, et al. 2014. Research progress of intramuscular fat regulation in sheep[J]. Acta Ecologae Animalis Domastici, (9): 8-13.) [10] 徐晨晨. 2018. 钙蛋白酶介导的日粮抗氧化剂降低羊肉滴水损失的机制[D]. 博士论文, 中国农业大学, 导师: 罗海玲, pp. 89. (Xu C C.2018. Mechanism by which calpain - mediated dietary antioxidants reduce water loss in mutton[D]. Thesis for Ph. D., China Agricultural University. supervisor: Luo H L, pp. 89.) [11] 张玉伟, 罗海玲, 贾慧娜, 等. 2012. 肌肉系水力的影响因素及其可能机制[J]. 动物营养学报, 24(08): 1389-1396. (Zhang Y W, Luo H L, Jia H N, et al.2012. Influence factors and possible mechanism of muscular system hydraulic power[J]. Chinese Journal of Animal Nutrition, 24(08): 1389-1396. ) [12] Aali M, Moradi-shahrbabak H, Moradi-shahrbabak M, et al.2016. Polymorphism in the SCD gene is associated with meat quality and fatty acid composition in Iranian fat-and thin-tailed sheep breeds[J]. Livestock Science, 188: 81-90. [13] Aali M, Shahrbabak M, Shahrbabak H M, et al.2014. Identifying novel SNPs and allelic sequences of the stearoyl-CoA desaturase gene (SCD) in fat-tailed and thin-tailed sheep breeds.[J]. Biochemical Genetics, 52(3-4): 153-158. [14] Aviles C, Polvillo O, Pena F, et al.2013. Associations between DGAT1, FABP4, LEP, RORC, and SCD1 gene polymorphisms and fat deposition in Spanish commercial beef[J]. Journal of Animal Science, 91(10): 4571-4577. [15] Bakhtiarizadeh M R, Moradishahrbabak M, Ebrahimie E, et al.2013.Underlying functional genomics of fat deposition in adipose tissue[J]. Gene, 521(1): 122-128. [16] Barber M C, Travers M T.1995. Cloning and characterisation of multiple acetyl-CoA carboxylase transcripts in ovine adipose tissue[J]. Gene(Amsterdam), 154(2): 0-275. [17] Berk A, Lodish H, Zipursky S L, et al.2000. Recombination between Homologous DNA Sites[M]. // Molecular Cell Biology(4th edition), Garland Science, New York, Section 1.2. [18] Bingham S A, HUGHES R, CROSS A J.2002. Effect of white versus red meat on endogenous N-nitrosation in the human colon and further evidence of a dose response[J]. Journal of Nutrition, 132(11 Suppl): 3522S. [19] Bonnet M, Faulconnier Y, Hocquette J F, et al.2004. Nutritional status induces divergent variations of GLUT4 protein content, but not lipoprotein lipase activity, between adipose tissues and muscles in adult cattle[J]. British Journal of Nutrition, 92(04): 617. [20] Chai Y L, Ma H M, Jiang J.2015. Molecular characterization, tissue expression profile and SNP analysis of porcine GLP2R[J]. Genetics and molecular research: GMR, 14(4): 12931-12941. [21] Chen L, Cheng B, LI L, et al.2015. The molecular characterization and temporal-spatial expression of myocyte enhancer factor 2 genes in the goat and their association with myofiber traits[J]. Gene, 555(2): 223-230. [22] Christie W W.1989. Gas Chromatography and Lipids[M]. Oily Press, Ayr, Scotland, pp. 24-34. [23] Ciobanu D, Bastiaansen J, Malek M, et al.2001. Evidence for new alleles in the protein kinase adenosine monophosphate-activated γ3-subunit gene associated with low glycogen content in pig skeletal muscle and improved meat quality[J]. Genetics, 159(3): 1151-1162. [24] Dall'olio S, Scotti E, Costa LN, et al.2018. Effects of single nucleotide polymorphisms and haplotypes of the protein kinase AMP-activated non-catalytic subunit gamma 3(PRKAG3) gene on production, meat quality and carcass traits in Italian Large White pigs[J]. Meat Science, 136:44-49. [25] Dervishi E, Serrano M, Joy M, et al.2015. Structural characterisation of the acyl CoA: Diacylglycerol acyltransferase 1 (DGAT1) gene and association studies with milk traits in Assaf sheep breed[J]. Small Ruminant Research, 131: 78-84. [26] Devine C, Dikeman M.2014. Encyclopedia of meat sciences[M]. Elsevier. [27] Di Gerlando R, Mastrangelo S, Tortorici L, et al.2017. Full-length sequencing and identification of novel polymorphisms in the ACACA gene of Valle del Belice sheep breed[J]. Journal of Genetics, 96(4): 591-597. [28] Fernabdez X, Monin G, Talmant A, et al.1999. Influence of intramuscular fat content on the quality of pig meat-1. Composition of the lipid fraction and sensory characteristics of m. longissimus lumborum[J]. Meat Science, 53(1): 59-65. [29] Frank D C, Ball A J, Hughes J M, et al.1996. Sensory and flavor chemistry characteristics of australian beef; the influence of intramuscular fat, feed and breed[J]. Journal of Agricultural and Food Chemistry, 15, 7(1)52. [30] Fscher K.2007. Drip loss in pork: Influencing factors and relation to further meat quality traits[J]. Journal of Animal Breeding and Genetics, 124 Suppl 1(s1): 12-18. [31] Galdikas A, Mironas A, Senulien D, et al.2000. Response time based output of metal oxide gas sensors applied to evaluation of meat freshness with neural signal analysis[J]. Sensors and Actuators B (Chemical), 69(3): 258-265. [32] Gebauer S K, Psota T L, Harris W S, et al.2006. n-3 Fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits[J]. The American Journal of Clinical Nutrition, 83(6). [33] Granlund A, Jensen-Waern M, Essén-Gustavsson B.2011. The influence of the PRKAG3 mutation on glycogen, enzyme activities and fibre types in different skeletal muscles of exercise trained pigs[J]. Acta Veterinaria Scandinavica, 53(1): 20. [34] Gui L, Jia C, Zhang Y, et al.2016. Association studies on the bovine lipoprotein lipase gene polymorphism with growth and carcass quality traits in Qinchuan cattle[J]. Molecular and Cellular Probes, 30(2): 61. [35] Gunawan A, Jakaria L K, Furqon A, et al.2012. Transcriptome analysis of liver for meat odour and flavour in javanese fat-tailed by using RNA deep sequencing[C]//Plant and Animal Genome XX Conference, pp.66. [36] Guo B, Kongsuwan K, Greenwood P L, et al.2014. A gene expression estimator of intramuscular fat percentage for use in both cattle and sheep[J]. Journal of animal science and biotechnology, 5(1): 35-35. [37] Huang W, Guo Y, Du W, et al.2017. Global transcriptome analysis identifies differentially expressed genes related to lipid metabolism in Wagyu and Holstein cattle[J]. Scientific Reports, 7(1): 5278. [38] Huang Y N, Wang J, Chen B J, et al.2016. Gene expression and enzyme activity of lipoprotein lipase correlate with intramuscular fat content in Guangxi san-huang and Arbor Acres chickens[J]. Genetics and Molecular Research, 15(2), DOI: 10.4238/gmr.15027414. [39] Immonen K, Puolanne E.2000. Variation of residual glycogen-glucose concentration at ultimate pH values below 5.75[J]. Meat Science, 55(3): 279-283. [40] Jiang J, Ma L, Prakapenka D, et al.2019. A large-scale genome-wide association study in US Holstein cattle[J]. Frontiers in Genetics, 10: 412. [41] Juszczuk-kubiak E, Bujko K, Grześ M, et al.2016. Study of bovine Mef2B gene: The temporal-spatial expression patterns, polymorphism and association analysis with meat production traits[J]. Journal of animal science, 94(11): 4536-4548. [42] Li B, Weng Q, Dong C, et al.2018a. A key gene, PLIN1, can affect porcine intramuscular fat content based on transcriptome analysis[J]. Genes, 9(4): 194. [43] Li C, Sun D, Zhang S, et al.2016. A post-GWAS confirming the SCD gene associated with milk medium- and long-chain unsaturated fatty acids in Chinese Holstein population[J]. Animal Genetics, 47(4): 483-490. [44] Li J, Liu S, Li Z, et al.2018b. DGAT1 polymorphism in Riverine buffalo, Swamp buffalo and crossbred buffalo[J]. Journal of Dairy Research, 85(4): 412-415. [45] Listyarini K, Jakaria, Furqon A, et al.2018. Expression of CYP2A6, KIF12, and SULT1C1 in liver of sheep with divergent sheepmeat flavour and odour[J]. IOP Conference Series Earth and Environmental Science, 157(1):012029. [46] Liu Y J, Cheng Y Q, Song S Y, et al.2012. Effects of dietary energy level on the expression of the HSL gene in different tissues of sheep[J]. Journal of Integrative Agriculture, 11(7): 1167-1172. [47] Mcgilchrist P, Perovic J L, Gardner G E, et al.2014. The incidence of dark cutting in southern Australian beef production systems fluctuates between months[J]. Animal Production Science, 54(10): 1765-1769. [48] Milan D, Jeon J T, Looft C, et al.2000. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle[J]. Science, 288(5469): 1248-1251. [49] Mohammadi H, Shahrebabak M, Sadeghi M.2013. Association between single nucleotide polymorphism in the ovine DGAT1 gene and carcass traits in two Iranian sheep breeds[J]. Animal Biotechnology, 24(3): 159-167. [50] Moioli B, Scatà M C, De Matteis G, et al.2013. The ACACA gene is a potential candidate gene for fat content in sheep milk[J]. Animal Genetics, 44(5): 601-603. [51] Northcutt J K.2010. Preslaughter factors affecting poultry meat quality[M].//Poultry Meat Processing, Second Edition, Owens C M eds, CRC Press, 5-24. [52] Pearce K L, Rosenvold K, Andersen H J, et al.2011. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes-A review[J]. Meat Science, 89(2): 111-124. [53] Pena R N, Rosfreixedes R, Tor M, et al.2016. Genetic marker discovery in complex traits: A field example on fat content and composition in pigs[J]. International Journal of Molecular Sciences, 17(12). [54] Ponnampalam E N, Hopkins D L, Bruce H, et al.2017. Causes and contributing factors to “dark cutting” meat: Current trends and future directions: A review[J]. Comprehensive Reviews in Food Science and Food Safety, 16(3): 400-430. [55] Ponsuksili S, Jonas E, Murani E, et al.2008. Trait correlated expression combined with expression QTL analysis reveals biological pathways and candidate genes affecting water holding capacity of muscle[J]. BMC Genomics, 9(1): 367-367. [56] Qiao Y, Huang Z, Qifa L I, et al.2008. Developmental Changes of the LPL mRNA expression and its effect on IMF content in sheep muscle[J]. Agricultural Sciences in China, 7(1): 104-111. [57] Raza S H A, Gui L, Khan R, et al.2018. Association between FASN gene polymorphisms ultrasound carcass traits and intramuscular fat in Qinchuan cattle[J]. Gene, 645: 55-59. [58] Raza S H A, Khan R, Abdelnour S A, et al.2019. Advances of molecular markers and their application for body variables and carcass traits in Qinchuan cattle[J]. Genes, 10(9): 717. [59] Rovadoscki G A, Pertile S F N, Alvarenga A B, et al.2018. Estimates of genomic heritability and genome-wide association study for fatty acids profile in Santa Inês sheep[J]. BMC Genomics, 19(1): 375-388. [60] Saini B L, Gaur G K, Sahoo N R, et al.2018. Polymorphism distribution of RYR1, PRKAG3, HFABP, MYF-5 and MC4R genes in crossbred pigs[J]. Molecular Biology Reports, 45(6): 1575-1585. [61] Saito R, Matsuzaka T, Karasawa T, et al.2011. Macrophage Elovl6 deficiency ameliorates foam cell formation and reduces atherosclerosis in low-density lipoprotein receptor-deficient mice[J]. Arteriosclerosis Thrombosis & Vascular Biology, 31(9): 1973-1979. [62] Sanders, Thomas A B.2013. Reappraisal of SFA and cardiovascular risk[J]. Proceedings of the Nutrition Society, 72(04): 390-398. [63] Sanz A, Serrano C, Ranera B, et al.2015. Novel polymorphisms in the 5'UTR of FASN, GPAM, MC4R and PLIN1 ovine candidate genes: Relationship with gene expression and diet[J]. Small Ruminant Research, 123(1): 70-74. [64] Shin S, Heo J, Chung E, et al.2012. Genetic variants of the FABP4 gene are associated with marbling scores and meat quality grades in Hanwoo(Korean cattle)[J]. Molecular Biology Reports, 39(5): 5323-5330 [65] Sunaga H, Matsui H, Ueno M, et al.2013. Deranged fatty acid composition causes pulmonary fibrosis in Elovl6-deficient mice[J]. Nature Communications, 4(1): 1-14. [66] Verardo L L, Sevonaimonen M, Serenius T, et al.2017. Whole-genome association analysis of pork meat pH revealed three significant regions and several potential genes in Finnish Yorkshire pigs[J]. BMC Genetics, 18(1). [67] Virtanen J K, Jaakko M, Tomi-pekk T, et al.2014. Dietary fatty acids and risk of coronary heart disease in men: The kuopio ischemic heart disease risk factor study[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(12): 2679-2687. [68] Xu X, Wei X, Yang Y, et al.2015. PPARγ, FAS, HSL mRNA and protein expression during Tan sheep fat-tail development[J]. Electronic Journal of Biotechnology, 18(2): 122-127. [69] Yan W, Zhou H, Lou Y, et al.2012. Allelic variation in ovine fatty acid-binding protein (FABP4) gene[J]. Molecular Biology Reports, 39(12): 10621-10625. [70] Yang G, Zhou H, Wang R, et al.2015. Variation in the ovine PRKAG3 gene[J]. Gene, 567(2): 251-254. [71] Yao D W, Luo J, He Q Y, et al.2016. Thyroid hormone responsive (THRSP) promotes the synthesis of medium-chain fatty acids in goat mammary epithelial cells[J]. Journal of Dairy Science, 99(4). [72] Young H J, Jenkins N T, Zhao Q, et al.2015. Measurement of intramuscular fat by muscle echo intensity[J]. Muscle Nerve, 52: 963-971 [73] Young O A, Berdague J L, Vilallon C, et al.1997. Fat-borne volatiles and sheep meat odour[J]. Meat Science, 45(2): 183-200. [74] Zhang Y, Wang Y, Wang H, et al.2019a. MicroRNA-224 impairs adipogenic differentiation of bovine preadipocytes by targeting LPL[J]. Molecular and Cellular Probes, 44: 29-36. [75] Zhang Y, Zhang J, Gong H, et al.2019b. Genetic correlation of fatty acid composition with growth, carcass, fat deposition and meat quality traits based on GWAS data in six pig populations[J]. Meat Science, 150: 47-55. [76] Zhu J, Luo J, Wang W, et al.2014. Inhibition of FASN reduces the synthesis of medium-chain fatty acids in goat mammary gland[J]. Animal, 8(9): 1469-1478.