Fungal Laccase: Multi-biofunction and Complicated Natural Substrates
LIU Ning1*, JIA Hui1*, SHEN Shen1*, CAO Zhi-Yan1,2,3*, DONG Jin-Gao1,2,3*
1 College of Life Sciences, Hebei Agricultural University, Baoding 071001, China; 2 College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; 3 Hebei Key Laboratory of Physiological and Molecular Plant Pathology, Baoding 071001, China
Abstract:Laccase is a polyphenol oxidase containing copper ions, which occur widely in fungi, plants, bacteria and insects. In fungi, laccases are generally in the form of gene families encoding isozymes which are involved in many important biological processes including fungal morphogenesis, pigment synthesis, infection and pathogenesis. Laccase catalyze the oxidation of a wide variety of substrates such as polyphenols, aromatic amines and lignin. However, the research about laccases mainly focuses on the degradation and decolorization of artificial compounds such as toxic compounds. There are few studies on the identification and analysis of natural catalytic substrates and their metabolic pathways in fungi. In this paper, the biological functions of fungal laccase and its natural catalytic substrate are reviewed to clarify the mechanism of laccase biological function.
[1] 刘宁, 渠清, 李丽娜, 等. 2019. 禾谷镰孢漆酶样多铜氧化酶的鉴定及其表达模式[J].植物病理学报, 49(6): 1-15 . (Liu N, Qu Q, Li L N, et al.2019. Identification of laccase-like multicopper oxidases in Fusarium graminearum and expression profiling during during maize stalk infection[J]. Acta Phytopathologica Sinica, 49(6): 1-15) [2] 赵传志. 2006. 稻瘟病菌漆酶基因的生物信息学分析及其功能验证[D]. 福建农林大学, 硕士学位论文, 导师: 王宗华, 鲁国东, pp. 19-23. (Zhao C Z.2006. Bioinformatics analysis and functional validation of laccase gene in Magnaporthe grisea [D]. Fujian Agricultural and Forestry University, Thesis for M. S., Supervisor: Wang Z H, Lu G D, pp. 19-23.) [3] 张翠苹. 2016. 灰葡萄孢菌和紫外诱导葡萄抗毒素白藜芦醇合成及代谢的研究[D].四川农业大学, 硕士学位论文, 导师: 张敏, pp. 21-57. (Zhang C P.2016. Biosynthesis and metabolism of the phytalexin reveratrol induced by Botrytis cinerea and UV-radiation in grape[D]. Sichuan Agricultural University, Thesis for M. S., Supervisor: Zhang M, PP. 21-57.) [4] Almeida F, Wolf J M, Casadevall A.2015. Virulence-associated enzymes of Cryptococcus neoformans[J]. Eukaryotic Cell, 14: 1173-1185. [5] Ao J, Bandyopadhyay S, Free S J.2018. Characterization of the Neurospora crassa DHN melanin biosynthetic pathway in developing ascospores and peridium cells[J]. Fungal Biology, 123: 1-9. [6] Baek J H, Park J A, Kim J M, et al.2014. Functional analysis of a tannic-acid-inducible and hypoviral-regulated small heat-shock protein Hsp24 from the chestnut blight fungus Cryphonectria parasitica[J]. Molecular Plant-Microbe Interactions, 27: 56-65. [7] Berthet S, Demont-Caulet N, Pollet B, et al.2011. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems[J]. Plant Cell, 23: 1124-1137. [8] Bertrand B, Martinez-Morales F, Trejo-Hernandez M R.2017. Upgrading laccase production and biochemical properties: Strategies and challenges[J]. Biotechnology Progress, 33: 1015-1034. [9] Bugg T D, Ahmad M, Hardiman E M, et al.2011. Pathways for degradation of lignin in bacteria and fungi[J]. Natural Product Reports, 28: 1883-1896. [10] Cañas A I, Camarero S.2010. Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes[J]. Biotechnology Advances, 28: 694-705. [11] Canero D C, Roncero M I G.2008a. Influence of the chloride channel of Fusarium oxysporum on extracellular laccase activity and virulence on tomato plants[J]. Microbiology, 154: 1474-1481. [12] Canero D C, Roncero M I G.2008b. Functional analyses of laccase genes from Fusarium oxysporum[J]. Phytopathology, 98: 509-518. [13] Cecchini M M, Reale S, Manini P, et al.2017. Modeling fungal melanin buildup: Biomimetic polymerization of 1,8-dihydroxynaphthalene mapped by mass spectrometry[J]. Chemistry, 23: 8092-8098. [14] Chakraborty T, Thuer E, Heijink M, et al.2018. Eicosanoid biosynthesis influences the virulence of Candida parapsilosis[J]. Virulence, 9: 1019-1035. [15] Chung H J, Kim M J, Lim J Y, et al.2006. A gene encoding phosphatidyl inositol-specific phospholipase C from Cryphonectria parasitica modulates the lac1 expression[J]. Fungal Genetics and Biology, 43: 326-336. [16] Chung H J, Kwon B R, Kim J M, et al.2008. A tannic acid-inducible and hypoviral-regulated laccase3 contributes to the virulence of the chestnut blight fungus Cryphonectria parasitica[J]. Molecular Plant-Microbe Interactions, 21: 1582-1590. [17] Dashtban M, Schraft H, Syed T A, et al.2010. Fungal biodegradation and enzymatic modification of lignin[J]. International Journal of Biochemistry and Molecular Biology, 1: 36-50. [18] Dias A A, Freitas G S, Marques G S, et al.2010. Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi[J]. Bioresource Technology, 101: 6045-6050. [19] Doddapaneni H, Subramanian V, Fu B, et al.2013. A comparative genomic analysis of the oxidative enzymes potentially involved in lignin degradation by Agaricus bisporus[J]. Fungal Genetics and Biology, 55: 22-31. [20] Eagen R, Kim S H, Kronstad J W, et al.2001. An hydroxynaphtalene reductase gene from the wood-staining fungus Ophiostoma floccosum complements the buff phenotype in Magnaporthe grisea[J]. Mycological Research, 105: 461-469. [21] Eisenman H C, Casadevall A.2012. Synthesis and assembly of fungal melanin[J]. Applied Microbiology and Biotechnology, 93: 931-940. [22] Eisenman H C, Frases S, Nicola A M, et al.2009. Vesicle-associated melanization in Cryptococcus neoformans[J]. Microbiology, 155: 3860-5367. [23] Fan X, Zhou Y, Xiao Y, et al.2014. Cloning, expression and phylogenetic analysis of a divergent laccase multigene family in Auricularia auricula-judae[J]. Microbiological Research, 169: 453-462. [24] Fang W, Ji S, Jiang N, et al.2012. Naphthol radical couplings determine structural features and enantiomeric excess of dalesconols in Daldinia eschscholzii[J]. Nature Communications, 3: 1039. [25] Frandsen R J N, Nielsen N J, Maolanon N, et al.2006. The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones[J]. Molecular Microbiology, 61: 1069-1080. [26] Frases S, Salazar A, Dadachova E, et al.2006. Cryptococcus neoformans can utilize the bacterial melanin precursor homogentisic acid for fungal melanogenesis[J]. Applied & Environmental Microbiology, 73(2):615. [27] Giardina P, Faraco V, Pezzella C, et al.2010. Laccases: A never-ending story[J]. Cellular and Molecular Life Sciences, 67: 369-385. [28] Guetsky R, Kobiler I, Wang X, et al.2005. Metabolism of the flavonoid epicatechin by laccase of Colletotrichum gloeosporioides and its effect on pathogenicity on avocado fruits[J]. Phytopathology, 95: 1341-1348. [29] Hilgers R, Vincken J-P, Gruppen H, et al.2018. Laccase/mediator systems: their reactivity toward phenolic lignin structures[J]. ACS Sustainable Chemistry & Engineering, 6: 2037-2046. [30] Hoegger P J, Navarro-Gonzalez M, Kilaru S, et al.2004. The laccase gene family in Coprinopsis cinerea (Coprinus cinereus)[J]. Current Genetics, 45: 9-18. [31] Jin W, Li J, Feng H, et al.2018. Importance of a laccase gene (Lcc1) in the development of Ganoderma tsugae[J]. International Journal of Molecular Sciences, 19: 471. [32] Kaur K, Sharma A, Capalash N, et al.2019. Multicopper oxidases: Biocatalysts in microbial pathogenesis and stress management[J]. Microbiological Research, 222: 1-13. [33] Kilaru S, Hoegger P J, Kües U.2006. The laccase multi-gene family in Coprinopsis cinerea has seventeen different members that divide into two distinct subfamilies[J]. Current Genetics, 50: 45-60. [34] Kim J E, Han K H, Jin J M, et al.2005. Putative polyketide synthase and laccase genes for biosynthesis of aurofusarin in Gibberella zeae[J]. Applied and Environmental Microbiology, 71: 1701-1708. [35] Křesinová Z, Moeder M, Ezechiáš M, et al.2012. Mechanistic study of 17 α-ethinylestradiol biodegradation by Pleurotus ostreatus: Tracking of extracelullar and intracelullar degradation mechanisms[J]. Environmental Science & Technology, 46: 13377. [36] Kues U, Ruhl M.2011. Multiple multi-copper oxidase gene families in Basidiomycetes - What for?[J]. Current Genomics, 12(2): 72-94. [37] Lakshmanan D, Sadasivan C.2016. Trichoderma viride laccase plays a crucial role in defense mechanism against antagonistic organisms[J]. Frontiers in Microbiology, 7: 741. [38] Lin S Y, Okuda S, Ikeda K, et al.2012. LAC2 encoding a secreted laccase is involved in appressorial melanization and conidial pigmentation in Colletotrichum orbiculare[J]. Molecular Plant-Microbe Interactions, 25: 1552-1561. [39] Liu N, Cao Z, Cao K, et al.2019a. Identification of laccase-like multicopper oxidases from the pathogenic fungus Setosphaeria turcica and their expression pattern during growth and infection[J]. European Journal of Plant Pathology, 153: 1149-1163. [40] Liu N, Shen S, Jia H, et al.2019b. Heterologous expression of Stlac2, a laccase isozyme of Setosphearia turcica, and the ability of decolorization of malachite green[J].International Journal of Biological Macromolecules, 138: 21-28. [41] Lugaro G, Carrea G, Cremonesi P, et al.1973. The oxidation of steroid hormones by fungal laccase in emulsion of water and organic solvents[J]. Archives of Biochemistry & Biophysics, 159: 1-6. [42] Ma S X, Cao K K, Liu N, et al.2017. The StLAC2 gene is required for cell wall integrity, DHN-melanin synthesis and the pathogenicity of Setosphaeria turcica[J]. Fungal Biology, 121: 589-601. [43] May R C, Stone N R, Wiesner D L, et al.2016. Cryptococcus: from environmental saprophyte to global pathogen[J]. Nature Reviews Microbiology, 14: 106-117. [44] Mayer A M, Staples R C.2002. Laccase: New functions for an old enzyme[J]. Phytochemistry, 60(6): 551-565. [45] Min K L, Kim Y H, Kim Y W, et al.2001. Characterization of a novel laccase produced by the wood-rotting fungus Phellinus ribis[J]. Archives of Biochemistry and Biophysics, 392: 279-286. [46] Missall T A, Moran J M, Corbett J A, et al.2005. Distinct stress responses of two functional laccases in Cryptococcus neoformans are revealed in the absence of the thiol-specific antioxidant Tsa1[J]. Eukaryotic Cell, 4: 202. [47] Munk L, Sitarz A K, Kalyani D C, et al.2015. Can laccases catalyze bond cleavage in lignin[J]? Biotechnology Advances, 33: 13-24. [48] Nakade K, Watanabe H, Sakamoto Y, et al.2011. Gene silencing of the Lentinula edodes lcc1 gene by expression of a homologous inverted repeat sequence[J]. Microbiological Research, 166: 484-93. [49] Ning X, Florence C L, Philippe S, et al.2014. Systematic gene deletions evidences that laccases are involved in several stages of wood degradation in the filamentous fungus Podospora anserina[J]. Environmental Microbiology, 16: 141-161. [50] Nagai M, Kawata M, Watanabe H, et al.2003. Important role of fungal intracellular laccase for melanin synthesis: Purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies.[J]. Microbiology, 149(9):2455-2462. [51] Pereira-Junior R A, Huarte-Bonnet C, Frs P O, et al.2018. Riboflavin induces Metarhizium spp. to produce conidia with elevated tolerance to UV-B, and upregulates photolyases, laccases and polyketide synthases genes[J]. Journal of Applied Microbiology, 125: 159-171. [52] Sakamoto Y, Nakade K, Sato S, et al.2018a. Cell wall structure of secreted laccase-silenced strain in Lentinula edodes[J]. Fungal Biology, 122: 1192-1200. [53] Sakamoto Y, Sato S, Ito M, et al.2018b. Blue light exposure and nutrient conditions influence the expression of genes involved in simultaneous hyphal knot formation in Coprinopsis cinerea[J]. Microbiological Research, 217: 81-90. [54] Sapmak A, Boyce K J, Andrianopoulos A, et al.2015. The pbrB gene encodes a laccase required for dhn-melanin synthesis in conidia of Talaromyces (Penicillium) marneffei[J]. PLoS ONE, 10: e0122728. [55] Sapmak A, Kaewmalakul J, Nosanchuk J D, et al.2016. Talaromyces marneffei laccase modifies THP-1 macrophage responses[J]. Virulence, 7: 702-717. [56] Savinova O S, Moiseenko K V, Vavilova E A, et al.2017. Properties of two laccases from the Trametes hirsuta 072 multigene family: Twins with different faces[J]. Biochimie, 142: 183-190. [57] Schouten A, Maksimova O, Cuesta-Arenas Y, et al.2008. Involvement of the ABC transporter BcAtrB and the laccase BcLCC2 in defence of Botrytis cinerea against the broad-spectrum antibiotic 2,4-diacetylphloroglucinol[J]. Environmental Microbiology, 10: 1145-1157. [58] Schouten A, Wagemakers L, Stefanato F L, et al.2002. Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase[J]. Molecular Microbiology, 43: 883-894. [59] Shao Y L, Okuda S, Ikeda K, et al.2012. LAC2 encoding a secreted laccase is involved in appressorial melanization and conidial pigmentation in Colletotrichum orbiculare[J]. Molecular Plant-Microbe Interactions, 25: 1552-1561. [60] Sharma K K, Singh D, Rawat S.2018. Molecular dynamics simulation studies suggests unconventional roles of non-secretary laccases from enteropathogenic gut bacteria and Cryptococcus neoformans serotype D[J]. Computional Biology and Chemistry, 73: 41-48. [61] Sjaarda C P, Abubaker K S, Castle A J.2015. Induction of lcc2 expression and activity by Agaricus bisporus provides defence against Trichoderma aggressivum toxic extracts[J]. Microbial Biotechnology, 8: 918-929. [62] Sugareva V, Hartl A, Brock M, et al.2006. Characterisation of the laccase-encoding gene abr2 of the dihydroxynaphthalene-like melanin gene cluster of Aspergillus fumigatus[J]. Archives of Microbiology, 186: 345-355. [63] Surendran A, Siddiqui Y, Ali N S, et al.2018. Inhibition and kinetic studies of cellulose and hemicellulose degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds[J]. Journal of Applied Microbiology, 124: 1544-1555. [64] Tetsch L, Bend J, Janssen M, et al.2005. Evidence for functional laccases in the acidophilic ascomycete Hortaea acidophila and isolation of laccase-specific gene fragments[J]. FEMS Microbiology Letters, 245: 161-168. [65] Tsai H F, Wheeler M H, Chang Y C, et al.1999. A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus[J]. Journal of Bacteriology, 181: 6469-6477. [66] Upadhyay S, Torres G, Lin X.2013. Laccases involved in 1,8-dihydroxynaphthalene melanin biosynthesis in Aspergillus fumigatus are regulated by developmental factors and copper homeostasis[J]. Eukaryotic Cell, 12: 1641-1652. [67] Wang C Y, Zhang S C, Yu Y, et al.2014. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis[J]. Plant Biotechnology Journal, 12: 1132-1142. [68] Williamson P R.1997. Laccase and melanin in the pathogenesis of Cryptococcus neoformans[J]. Frontiers in Bioscience, 2: 99-107. [69] Williamson P R.2016. Role of laccase in the virulence of Talaromyces marneffei: A common link between AIDS-related fungal pathogens[J]. Virulence, 7: 627-629. [70] Williamson P R, Wakamatsu K, Ito S.1998. Melanin biosynthesis in Cryptococcus neoformans[J]. Journal of Bacteriology, 180: 1570-1572. [71] Zhang J, Chen H, Chen M, et al.2015. Cloning and functional analysis of a laccase gene during fruiting body formation in Hypsizygus marmoreus[J]. Microbiological Research, 179: 54-63. [72] Zhao J, Kwan H S.1999. Characterization, molecular cloning, and differential expression analysis of laccase genes from the edible mushroom Lentinula edodes[J]. Applied and Environmental Microbiology. 65: 4908-4913. [73] Zhu X, Williamson P R.2004. Role of laccase in the biology and virulence of Cryptococcus neoformans[J]. FEMS Yeast Research, 5: 1-10. [74] Zhu X D, Gibbons J, Garcia-Rivera J, et al.2001. Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor[J]. Infection and Immunity, 69: 5589-5596.