Identification of a Tobacco (Nicotiana tobacum) PGPR Strain and Optimization for Its Fermentation Conditions by Response Surface Analysis Method
WU Xiang*, XIE Li-Yuan, TAN Hao, GAN Bing-Cheng, PENG Wei-Hong, HUANG Zhong-Qian
Soil and Fertilizer institute, Sichuan Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Southwestern Region Agromicrobiological Resource Utilization, Ministry of Agriculture/Key Laboratory of Agricultural Environment in Southwest Mountain Areas, Ministry of Agriculture, Chengdu 610066, China
Abstract:The definite taxonomic classification and fermentation conditions of the functional bacterial could be more efficient for biofertilizer development. Plant growth-promoting rhizobacteria (PGPR) strain MT-002-B-12 is promising isolate for tobacco biofertilizer production as a potential supplementary microbe. The aim of this study is to identify its taxonomic classification, and further optimize the conditions in fermentation. The phylogeny of PGPR strain MT-002-B-12 was analyzed by phenotypic features, physiological-biochemical characteristics and 16S rDNA gene sequence alignments. The fermentation conditions of MT-002-B-12 to produce indole-3-acetic acid (IAA) were optimized by combining the single factor condition analysis and response surface analysis method. The result of classification showed that MT-002-B-12 was Klebsiella variicola. The fermentation experiments showed that the optimum fermentation conditions for MT-002-B-12 was culture volume 30% (V/V), initial pH 6.0, temperature 25 ℃, shaker speed 150 r/min, culture time 34 h; and the optimum content of nutrients in the medium was 1.11% sucrose, 1.36% peptone, 0.15‰ MgSO4·7H2O, 0.34‰ CaCl2·2H2O. The strain MT-002-B-12 enriched the species of growth promoting bacteria, and could be used as a strain resource for the development of tobacco biofertilizer.
[1] 葛春辉, 孟阿静, 马彦茹, 等. 2014. 一株黄瓜根际促生菌的筛选、鉴定及其发酵特性[J]. 生物技术通报, (3): 94-99. (Ge C H, Meng A J, Ma Y R, et al. 2014. Selection, identification and characteristics of a cucumber growth-promotion strain of rhizobacteria[J]. Biotechnology Bulletin, (3): 94-99.) [2] 龚凤娟, 恩特马克·布拉提白, 张宇凤, 等. 2011. 具有ACC 脱氨酶活性的杜仲内生细菌的分离鉴定及其抗菌活性[J]. 微生物学通报, 38(10): 1526-1532. (Gong F J, Borrathybay E, Zhang Y F, et al.2011. Isolation and antibacterial activity of ACC deaminase-containing endophytic bacteria from Eucommia ulmoides Oliver[J]. Microbiology China, 38(10): 1526-1532.) [3] 郭英, 杨萍, 张丹雨, 等. 2018. 野大豆多功能根际促生菌的筛选鉴定和促生效果研究[J]. 生物技术通报, 34(10): 108-115. (Guo Y, Yang P, Zhang D Y, et al.2018. Screening, identification and growth-promoting effect of multifunction rhizosphere growth-promoting strain of wild soybean[J]. Biotechnology Bulletin, 34(10): 108-115.) [4] 韩如月, 李睿瑞, 杨帆, 等. 2019. 一株水稻根内生拮抗细菌SM13的分离及鉴定[J]. 微生物学通报, 46(5): 1030-1040. (Han R Y, Li R R, Yang F, et al.2019. Isolation and identification of an endophytic and antagonistic bacterium from rice roots[J]. Microbiology China, 46(5): 1030-1040.) [5] 姜焕焕, 祁佩时, 王通, 等. 2019. 花生根际多功能固氮菌的分离及其耐盐碱特性研究[J]. 生物技术学报, 35(3): 24-30. (Jiang H H, Qi P S, Wang T, et al.2019. Screening of multi-function nitrogen-fixing bacteria in peanut rhizosphere and their tolerances to saline[J]. Biotechnology Bulletin, 35(3): 24-30.) [6] 李引, 虞丽, 李辉信, 等. 2012. 一株花生根际促生菌的筛选鉴定及其特性研究[J]. 生态与农村环境学报, 28(4): 416-421. (Li Y, Yu L, Li H X, et al, 2012. Isolation, identification and characteristics of a peanut growth-promoting strain of rhizobacteria[J]. Journal of Ecology and Rural Environment, 28(4): 416-421.) [7] 刘璇, 孔凡玉, 张成省, 等. 2012. 烟草根际解钾菌的筛选与鉴定[J]. 中国烟草科学, 33(3): 28-31. (Liu X, Kong F Y, Zhang C S, et al.2012. Isolation and identification of the potassium-releasing bacteria from tobacco rhizosphere[J]. Chinese Tobacco Science, 33(3): 28-31.) [8] 洛晶晶. 2014. 产表面活性剂菌株的筛选鉴定及对石油烃降解性能研究[D]. 硕士学位论文, 陕西科技大学, 导师: 花莉, pp. 12-19. (Luo J J.2014. Research on screening, identification of bacteria producing surfactant and degradation property on petroleum hydrocarbons[D]. Thesis for M.S., Shaanxi University of Science and Technology, Supervisor: Hua L, pp. 12-19.) [9] 潘爱红, 李江, 王蕾, 等. 2018. 南极交替单胞菌R11-5产卡拉胶酶的发酵条件优化[J]. 微生物学通报, 45(9): 2022-2034. (Pan A H, Li J, Wang L, et al.2018. Optimization of carrageenase fermentation conditions of Antarctic bacterium Alteromonas sp. R11-5[J]. Microbiology China, 45(9): 2022-2034.) [10] 吴翔, 甘炳成, 贾定洪, 等. 2013. 一株自生固氮细菌的分离和鉴定[J]. 西南农业学报, 26(1): 255-258. (Wu X, Gan B C, Jia D H, et al.2013. The isolation and identification of a free living nitrogen-fixing bacteria[J]. Southwest China Journal of Agricultural Sciences, 26(1): 255-258.) [11] 席琳乔, 李德锋, 王静芳, 等. 2008. 棉花根际促生菌固氮和分泌生长激素能力的测定[J]. 干旱区研究, 25(5): 690-694. (Xi L Q, Li D F, Wang J F, et al.2008. Measurement of nitrogen fixation capability and excreted IAA capability of PGPB isolated from cotton rhizosphere in salina[J]. Arid Zone Research, 25(5): 690-694.) [12] 肖荣风, 郑梅霞, 刘波, 等. 2017. 利用响应面法优化非致病性尖孢镰刀菌FJAT-9290固体发酵培养基[J]. 中国生物防治学报,33(2): 258-265. (Xiao R F, Zheng M X, Liu Bo, et al.2017. Optimization of solid-state fermentation culture for biocontrol agent non-pathogenic Fusarium oxysporum FJAT-9290 by response surface methodology[J]. Chinese Journal of Biological Control, 33(2): 258-265.) [13] 谢丽源, 谭伟, 郭勇, 等. 2011. 响应面法优化桑黄产胞内多糖液体发酵培养基[J]. 食品科学, 31(7): 224-228. (Xie L Y, Tan W, Guo Y, et al.2011. Application of response surface methodology for optimization of liquid fermentation medium for intracellular polysaccharide production by Phellinus baumii[J]. Food Science, 31(7): 224-228.) [14] 徐婧, 邵锴, 李东芳, 等. 2018. 产IAA菌的筛选、鉴定及其培养基的优化[J]. 苏州科技大学学报(自然科学版), 35(2): 45-54. (Xu J, Shao K, Li D F, et al.2018. Selection, identification of an IAA biosynthesis strain and the optimization of its culture medium[J]. Journal of Suzhou University of Science and Technology (Natural Science), 35(2): 45-54.) [15] 徐文思, 姜瑛, 李引, 等. 2014. 一株植物促生菌的筛选、鉴定及其对花生的促生效应研究[J]. 土壤, 46(1): 119-125. (Xu W S, Jiang Y, Li Y, et al.2014. Isolation, identification of plant growth-promoting bacteria and its promoting effects on peanuts[J]. Soils, 46(1): 119-125.) [16] 尹坤, 阳洁, 顾文杰, 等. 2015. 岑溪药用野生稻高效内生固氮菌分离及促生特性[J]. 微生物学通报, 42(8): 1482-1491. (Yin K, Yang J, Gu W j, et al.2015. Isolation and characterization of plant growth promotion of efficient endophytic diazotrophs from Oryza officinalis wall in Cenxi[J]. Microbiology China, 42(8): 1482-1491.) [17] 占迪, 何环, 廖远松, 等. 2018. 褐煤强化产甲烷菌群的群落分析及条件优化[J]. 微生物学报, 58(4): 684-698. (Zhan D, He H, Liao Y S, et al.2018. Community structure analysis of methanogenic flora and optimization for bioaugmentation methane generation from lignite[J]. Acta Microbiologica Sinica, 58(4): 684-698.) [18] 赵斌, 何绍江. 2002. 微生物学实验[M]. 科学出版社, 北京, pp. 149-151. (Zhao B, He S J.2002. Microbiology experiment[M]. Science Press, Beijing, pp. 149-151.) [19] 张琨琨, 牛俊奇, 魏春燕, 等. 2014. 甘蔗内生固氮菌Klebsiella variicola DX120E nifH基因的克隆与序列分析[J]. 南方农业学报, 45(10): 1719-1725. (Zhang K K, Niu J Q, Wei C Y, et al.2014. Cloning and sequence analysis on nifH gene of Klebsiella variicola DX120E isolated from sugarcane[J]. Journal of Southern Agriculture, 45(10): 1719-1725.) [20] 章婷, Bedelkhan Almagul, 郑婕施, 等. 2016. 高产洛伐他汀棒曲霉菌株的筛选、鉴定及发酵条件优化[J]. 工业微生物, 46(6): 24-33. (Zhang T, Bedelkhan A, Zheng J S, et al.2016. Screening and identification of Aspergillus clavatus strain with high-yielding lovastatin and its optimization of fermentation conditions[J]. Industrial Microbiology, 46(6): 24-33.) [21] 郑文波, 申飞, 闫小梅, 等. 2015. 红壤中产吲哚乙酸并具解磷作用的促生菌筛选鉴定及促生效果研究[J]. 土壤, 47(2): 361-368. (Zheng W B, Shen F, Yan X M, et al.2015. Isolation and identification of the IAA-producing and phosphate-dissolving bacteria and its promoting effects on red soil[J]. Soils, 47(2): 361-368.) [22] Brisse S, Passet V, Grimont P A D.2014. Description of Klebsiella quasipneumoniae sp. nov., isolated from human infections, with two subspecies, Klebsiella quasipneumoniae subsp. quasipneumoniae subsp. nov. and Klebsiella quasipneumoniae subsp. similipneumoniae subsp. nov., and demonstration that Klebsiella singaporensis is a junior heterotypic synonym of Klebsiella variicola[J]. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 9): 3146-3152. [23] Glickmann E, Dessaux Y.1995. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied and Environmental Microbiology, 61(2): 793-796.