Rapid and Visual Detection of High Amylose Gene Wxa in Rice (Oryza sativa) Using LAMP Method
DAI An-Qi1,LIANG Xiang-Shuai1,YE Wen-Wei2,WANG He-Fei1,WU Xian-Jun2*, TIAN Yong-Hang1*
1 College of Food Science and Engineering, Hainan Tropic Ocean Univercity, Sanya 572022, China; 2 Rice Research Institute, Sichuan Agricultural University, Wenjiang 611130, China
Abstract:Mining and utilizing the allelic variation Wxa of high amylose gene particle bound starch synthase (waxy, Wx) is one of the hot spots in rice (Oryza sativa) breeding, but the key is to screen the gene Wxa conveniently. In this study, the visual loop-mediated isothermal amplification (LAMP) of rice high amylose gene Wxa was designed to explore a convenient screening method. Firstly, the Ex10-115(T/C) variant site and upstream and downstream consistent sequences of Wxa gene were identified as target sequences by sequence alignment. Then, using Primer3 Input, NEBcutter V2.0 and Primerexplore V5 software, cleaved amplified polymorphic sequences (CAPs) and LAMP markers were designed for genotyping. Finally, the visibility of the functional markers were tested. The results showed that there were conserved sequences near the Ex10-115(T/ C) variant site, from which CAPs markers (Wxa-2F and Wxa-2R) and LAMP markers (F3, B3, FIP and BIP) were designed. Using the CAPs marker to detect the Ex10-115(T/C) variant site in 10 rice cultivars, the gene Wxa was found in 'D62B', 'G46B', 'II-32B', 'ZS97B' and 'GLA4' those cultivars with higher amylose contents, while the other 5 cultivars did not carry Wxa that there's concordance between genotype and phenotype. The Wxa gene in rice was detected by LAMP marker combined with hydroxynaphthol blue (HNB) at 63° C for 60 minutes that the Wxa gene may be detected with the naked eye in rice varieties. The result was consistent with that of CAPs marker. In this study, a convenient method was designed to screen Wxa genes in rice. The results can provide references for the development and application of functional markers for other important genes in rice.
[1] 白榕, 白琳琳, 汪少芸, 等. 2021. LAMP 扩增产物检测方法研究进展及基因编辑技术在其中的应用[J]. 农业生物技术学报, 29(10): 2016-2030. ( Bai R, Bai L L, Wang S Y, et al. 2021. Research progress of LAMP amplicons detection method and the application of gene editing technology[J]. Journal of Agricultural Biotechnology, 29(10): 2016-2030. ) [2] 蔡一霞, 朱智伟, 王维, 等. 2005. 直链淀粉含量与稻米品质主要性状及米饭质地关系的研究[J]. 扬州大学学报, 26(4): 52-55. (Cai Y X, Zhu Z W, Wang W,et al. 2005. Studies on the relationships of amylose content with the grain quality and the texture of cooked rice[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 26(4): 52-55. ) [3] 范永义, 唐虹, 张玲, 等. 2014. 高直链淀粉水稻的淀粉积累及相关酶活性关系研究[J]. 广东农业科学, 41(20): 5-8. (Fan Y Y, Tang H, Zhang L, et al. 2014. Starch accumulation of rice with high amylosecontent and related enzyme activity[J]. Guangdong Agricultural Sciences, 41(20): 5-8. ) [4] 焦梦悦, 高涵, 王伟娜, 等. 2019. 四种测定直链淀粉和支链淀粉方法的比较[J]. 食品工业科技, 40(12): 259-264. (Jiao M Y, Gao H, Wang W N, et al. 2019. Comparison of four methods for the determination of amylose and amylopectin[J]. Science and Technology of Food Industry, 40(12): 259-264. ) [5] 李明. 2019. 高直链淀粉在食品和材料领域应用的研究进展[J]. 食品安全质量检测学报 , 10(20): 6739-6746. (Li M. 2019. Review on the application of high-amylose starch in the field of food and material[J]. Journal of Food Safety and Quality, 10(20): 6739-6746. ) [6] 李欣, 顾铭洪, 潘学彪. 1989. 稻米品质研究—Ⅱ. 灌浆期间环境条件对稻米品质的影响[J]. 江苏农学院学报, 10: 7-12. (Li X, Gu M H, Pan X B. 1989. A study on grain quality of rice-Ⅱ. The effect of environmental factors in the period of grain filling on grain quality[J]. Journal of Jiangsu Agricultural College, 10(1): 7-12. ) [7] 刘佩雄. 2019. 水稻粒型相关 QTL 的精细定位及分子育种利用研究[D]. 硕士学位论文, 四川农业大学, 导师: 李仕贵, pp. 39-41. (Liu P X. 2019. Fine mapping and molecular breeding utilization of rice grain shape related QTL[D]. Thesis for M. S. 1, Sichuan Agricultural University, Supervisor: Li S G, pp. 39-41. ) [8] 阮氏如钗. 2011. 利用越光×桂朝 2 号重组自交系群体检测稻米品质相关 QTL[D]. 硕士学位论文, 南京农业大学. 导师 : 万建民 , pp. 24. (NGUYEN THI NHU THOA. 2011. QTL mapping of rice quality traits using Koshihi kari×Guichao2 RIL population[D]. Thesis for M. S. , Najing Agricultural University, Supervisor: Wan J M, pp. 24. ) [9] 武晶, 黎裕. 2019. 基于作物种质资源的优异等位基因挖掘: 进展与展望[J]. 植物遗传资源学报, 20(6): 1380-1389. (Wu J, Li Y. 2019. Mining superior alleles in crop germplasm resources: Advances and perspectives[J]. Journal of Plant Genetic Resources, 20(6): 1380-1389. ) [10] 于果, 钱丽丽, 张东杰, 等. 2017. 不同品种大米理化指标的差异研究[J]. 农产品加工, 429(7): 41-43. (Yu G, Qian L L, Zhang D J, et al. 2017. Study on the differences of physical and chemical indexes in variety rice[J]. Farm Products Processing, 429(7): 41-43. ) [11] 张亮, 普世皇, 普玉娇, 等. 2016. 水稻稻米不同直链淀粉含量的特异引物分析[J]. 分子植物育种 , 14(9): 2466-2471. (Zhang L, Pu S H, Pu Y J, et al. 2016. Analysis of amylose content by specific primers for rice germplasms[J]. Molecular Plant Breeding, 14(9): 2466-2471. ) [12] 周屹峰, 赵霏, 任三娟, 等. 2010. 利用 Wx 基因功能性标记选育中等直链淀粉含量优质水稻保持系[J]. 浙江大学学报 ( 农业与生命科学版), 36(6): 602-608. (Zhou Y F, Zhao F, Ren S J, et al. 2010. Developing indica maintainer lines with intermediate amylose content by Wx functional microsatellite marker[J]. Journal of Zhejiang University (Agric. & Life Sci. ), 36(6): 602-608. ) [13] 朱霁晖, 张昌泉, 顾铭洪, 等. 2015. 水稻 Wx 基因的等位变异及育种利用研究进展[J]. 中国水稻科学 , 29(4): 431-438. (Zhu J H, Zhang C Q, Gu M H, et al. 2015. Progress in the allelic variation of Wx gene and its application in rice breeding[J]. Chinese Journal of Rice Science, 29(4): 431-438. ) [14] Becherer L, Borst N, Bakheit M, et al. 2020. Loop-mediated isothermal amplification (LAMP) -review and classification of methods for sequence-specific detection[J]. Analytical Methods, 12(6): 717-746. [15] Chiara B, Daniela C, Rosaria P, et al. 2014. Improvement of marker-based predictability of apparent amylose content in japonica rice through GBSSI allele mining[J]. Rice , 7(1): 1-18. [16] Choa K S, Kongsila P, Wangsawanga T, et al. 2020. Marker-assisted pseudo-backcross breeding for improvement of amylose content and aroma in Myanmar rice cultivar Sinthukha[J]. Science Asia, 46(5): 539-547. [17] Choudhary P, Rai P, Yadav J, et al. 2020. A rapid colorimetric LAMP assay for detection of Rhizoctonia solani AG-1IA causing sheath blight of rice[J]. Scientific Reports,10: 22022. [18] Fitzgerald M A, Rahman S, Resurreccion A P, et al. 2011. Identification of a major genetic determinant of glycaemic index in rice[J]. Rice, 4(2): 66-74. [19] Gahche J J, Bailey R L. 2021. Accurate measurement of nutrients and nonnutritive dietary ingredients from dietary supplements is critical in the precision nutrition era[J]. The Journal of Nutrition, 151(8): 2094-2095. [20] Goto M, Honda E, Ogura A, et al. 2009. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue[J]. Biotechniques, 46(3): 167-172. [21] Konieczny A, Ausubel F M. 1993. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers[J]. The Plant Journal, 4(2): 403-410. [22] Narushima J, Kimata S, Soga K, et al. 2019. Rapid DNA template preparation directly from a rice sample without purification for loop-mediated isothermal amplification (LAMP) of rice genes[J]. Bioscience Biotechnology and Biochemistry, 84(4): 670-677. [23] Ni D, Zhang S, Chen S, et al. 2011. Improving cooking and eating quality of Xieyou57, an elite indica hybrid rice, by marker-assisted selection of the Wx locus[J]. Euphytica, 179(2): 355-362. [24] Notomi T, Okayama H, Masubuchi H, et al. 2000. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research, 28(12): e63. [25] Oh I, Bae I, Lee H. 2018. Effect of dry heat treatment on physical property and in vitro starch digestibility of high amylose rice starch[J]. International Journal of Biological Macromolecules, 108: 568-575. [26] Porebski S, Bailey L, Baum B. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components[J]. Plant Molecular Biology Reporter, 15(1): 8-15. [27] Prasannakumar M, Parivallal B, Manjunatha C, et al. 2021a. Rapid genotyping of bacterial leaf blight resistant genes of rice using loop-mediated isothermal amplification assay[J]. Molecular Biology Reports, 48: 467-474. [28] Prasannakumar M, Parivallal P, Pramesh D, et al. 2021b. LAMP-based foldable microdevice platform for the rap id detection of Magnaporthe oryzae and Sarocladium oryzae in rice seed[J]. Scientific Reports, 11: 178. [29] Shao Y, Peng Y, Mao B, et al. 2020. Allelic variations of the Wx locus in cultivated rice and their use in the development of hybrid rice in China[J]. PLOS ONE, 15: e0232279. [30] Srividya A, Maiti B, Chakraborty A, et al. 2019. Loop mediated isothermal amplification: A promising tool for screening genetic mutations[J]. Molecular Diagnosis & Therapy, 23(6): 723-733. [31] Tao K, Yu W, Prakash S, et al. 2019. High-amylose rice: Starch molecular structural features controlling cooked rice texture and preference[J]. Carbohydrate Polymers, 219: 251-260. [32] Tomita N, Mori Y, Kanda H, et al. 2008. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products[J]. Nature Protocols, 3(5): 877-882. [33] Untergasser A, Cutcutache I, Koressaar T, et al. 2012. Primer3-new capabilities and interfaces[J]. Nucleic Acids Research, 40(15): e115. [34] Vincze T, Posfal J, Roberts R. 2003. NEBcutter: A program to cleave DNA with restriction enzymes[J]. Nucleic Acids Research, 31(13): 3688-3691. [35] Zhang C, Zhu J, Chen S, et al. 2019. Wxlv, the ancestral allele of rice Waxy gene[J]. Molecular Plant, 12(8): 1157-1166.