Abstract:Rare sugars are a class of sugar molecules and derivatives with low availability in nature. Rare sugars and their derivatives show unique physiological functions and have been extensively used in the food and medicine industry. Recently, the production cost of rare sugars has been significantly reduced with the continuous development of new preparation methods, and its application in agriculture is becoming a new research hotspot among academia and industry. Starting from different functions of rare sugars in agriculture, this paper summarizes its application in regulating the expression of defense genes, inhibiting the development of pests and diseases, promoting plant growth, and protecting the storage of agricultural products, and outlines the biological preparation of agricultural rare sugars. Rare sugars have the advantages of being safe for food and not polluting the environment, therefore the application of rare sugars in agriculture is safe, green, and highly efficient, and expected to provide technical assistance for the sustainable development of our country's agriculture.
[1] 陈瑶, 史荣久, 郑良灿, 等. 2022. 鼠李糖脂粗提物对植物病原真菌的抑菌作用[J]. 生态学杂志, 41(03): 520-527. (Chen Y, Shi R, Zheng L, et al. 2022. Inhibitory effects of rhamnolipid crude extract on plant pathogenic fungi[J]. Chinese Journal of Ecology, 41(03): 520-527. ) [2] 陈燕玲, 岑光莉, 孙婷婷, 等. 2022. 植物几丁质酶和 β-1,3-葡聚糖酶及其协同抗病性研究进展[J]. 农业生物技术学报 , 30(07): 1394-1411. (Chen Y, Cen R, Sun T, et al. 2022. Progress on Plant Chitinase and β -1, 3-glucanase and Their Synergistic Fun[J]. Chinese journal of agricul tural biotechnology, 30(7): 1394-1411. ) [3] 黄月园, 徐铮, 徐虹. 2021. 生物法生产 D-阿洛酮糖的研究进展[J]. 生物加工过程, 19(06): 581-588. (Huang Y, Xu Z, Xu H. 2021. Progress in biological production of D- psicose[J]. Chinese Journal of Bioprocess Engineering, 19(06): 581-588. ) [4] 李超, 吴冕, 高鑫, 等. 2021. 酶法生产稀少糖的研究进展[J]. 微生物学通报, 48(2): 606-619. (Li C, Wu M, Gao X, et al. 2021. Advances in enzymatic approaches to rare sugar production[J]. Microbiology China, 48(2): 606-619. ) [5] 王佳, 曾广智, 汪哲, 等. 2018. 杀线虫植物以及植物源杀线虫活性化合物研究与应用进展[J]. 中国生物防治学报 , 34(3): 469-479. (Wang J, Zeng G, Wang Z, et al. 2018. Research and application on namaticidal plants and phytochemicals[J]. Chinese Journal of Biological Control, 34(3): 469-479. ) [6] 许春爽, 姜宙, 沈伟, 等. 2018. 植物生长调节剂的毒理作用及其损害雄性生殖健康的研究进展[J]. 中华男科学杂志, 24(4): 370-375. (Xu C, Jiang Z, Shen W, et al. 2018. Toxicological characteristics of plant growth regulators and their impact on male reproductive health[J]. National Journal of Andrology, 24(4): 370-375. ) [7] 杨光, 李玲玉, 黄明丽, 等. 2018. 山梨醇对植株抗逆性作用的研究进展[J]. 土壤 , 50(3): 446-454. (Yang G, Li L, Huang M, et al. 2018. Progress in study on sorbitol effect on plants resistance[J]. Soils, 50(3): 446-454. ) [8] Barret M, Caponera V, McNair C, et al. 2020. Potential for use of erythritol as a socially transferrable ingested insecticide for ants (Hymenoptera: Formicidae)[J]. Journal of Economic Entomology, 113(3): 1382-1388. [9] Bellaloui N, Brown P H, Dandekar A M. 1999. Manipulation of in vivo sorbitol production alters boron uptake and transport in tobacco[J]. Plant Physiology, 119(2): 735-742. [10] Birch A N E, Robertson W M, Geoghegan I E, et al. 1993. Dmdp a plant-derived sugar analogue with systemic activity against plant parasitic nematodes[J]. Nematologica, 39(1-4): 521-535. [11] Brilisauer K, Rapp J, Rath P, et al. 2019. Cyanobacterial anti‐metabolite 7-deoxy-sedoheptulose blocks the shikimate pathway to inhibit the growth of prototrophic organisms[J]. Nature Communications, 10: 545. [12] Borah N S, Goswami D, Lahkar J, et al. 2015. Rhamnolipid produced by Pseudomonas aeruginosa SS14 causes complete suppression of wilt by Fusarium oxysporum f. sp. pisi in Pisum sativum[J]. Bio Control, 60: 375-385. [13] Chahed A, Nesler A, Navaziol L, et al. 2020. The rare sugar tagatose differentially inhibits the growth of Phytophthora infestans and Phytophthora cinnamomi by interfering with mitochondrial processes[J]. Frontiers in Microbiology, 11: 128. [14] Chahed A, Nesler A, Aziz A, et al. 2021. A review of knowledge on the mechanisms of action of the rare sugar D- tagatose against Phytopathogenic oomycetes[J]. Plant Pathology, 70(9): 1979-1986. [15] Chen L, Mu W, Zhang T, et al. 2010. An L-arabinose isomerase from Acidothermus cellulolytics ATCC 43068: Cloning, expression, purification, and characterization[J]. Applied Microbiology and Biotechnology, 86(4): 1089-1097. [16] Chen Z, Chen J, Zhang W, et al. 2018. Recent research on the physiological functions, applications, and biotechnological production of Dallose[J]. Applied Microbiology and Biotechnology, 102: 4269-4278. [17] Corneo P E, Jermini M, Nadalini S, et al. 2021. Foliar and root applications of the rare sugar tagatose control powdery mildew in soilless grown cucumbers[J]. Crop Protection, 149: 105753. [18] Emmadi M, Kulkarni S S. 2014. Recent advances in synthesis of bacterial rare sugar building blocks and their applications[J]. Natural Product Reports, 31(7): 870-879. [19] Goswami D, Handique P J, Deka S. 2014. Rhamnolipid biosurfactant against Fusarium sacchari-the causal organism of pokkah boeng disease of sugarcane[J]. Journal of Basic Microbiology, 54(6): 548-557. [20] Granstrom T B, Takata G, Tokuda M, et al. 2004. Izumoring: A novel and complete strategy for bioproduction of rare sugars[J]. Journal of Bioscience and Bioengineering, 97(2): 89-94. [21] Hu M, Li M, Jiang B, et al. 2021. Bioproduction of D-allulose: Properties, applications, purification, and future perspectives[J]. Comprehensive Reviews in Food Science and Food Safety, 20: 6012-6026. [22] Jayamuthunagai J, Gautam P, Srisowmeya G, et al. 2017. Biocatalytic production of D-tagatose: A potential rare sugar with versatile applications[J]. Critical Reviews in Food Science and Nutrition, 57(16): 3430-3437. [23] Jonghe K D, Dobbelaere I D, Sarrazyn R, et al. 2005. Control of Phytophthora cryptogea in the hydroponic forcing of witloof chicory with the rhamnolipid-based biosurfactant formulation PRO1[J]. Plant Pathology, 54(2): 219-226. [24] Ju X, Xu X, Shen M, et al. 2020. Biochemical and structural insights into an Ochrobactrum sp. CSL1 ribose-5-phos‐phate isomerase A and its roles in isomerization of rare sugars[J]. Enzyme and Microbial Technology, 140: 109604. [25] Kano A, Gomi K, Yamasaki-kokudo Y, et al. 2010. A rare sugar, D-allose, confers resistance to rice bacterial blight with upregulation of defense-related genes in Oryza sati- va[J]. Phytopathology, 100(1): 85-90. [26] Kano A, Hosotani K, Gomi K, et al. 2011. D-Psicose induces upregulation of defense-related genes and resistance in rice against bacterial blight[J]. Journal Plant Physiology, 168(15): 1852-1857. [27] Kano A, Fukumoto T, Ohtani K, et al. 2013. The rare sugar D-allose acts as a triggering molecule of rice defence via ROS generation[J]. Journal of Experimental Botany, 64(16): 4939-4951. [28] Kato-Noguchi H, Takoka T, Izumori K. 2005. Psicose inhibits lettuce root growth via a hexokinase-independent path way[J]. Physiology Plant, 125, 293-298. [29] Kato-Noguchi H, Takoka T, Izumori K. 2010. Psicose inhibits lettuce root growth via a hexokinase-independent path way[J]. Physiologia Plantarum, 125(3): 293-298. [30] Lahkar J, Goswami D, Deka S, et al. 2018. Novel approaches for application of biosurfactant produced by Pseudomo nas aeruginosa for biocontrol of Colletotrichum capsica responsible for anthracnose disease in chilli[J]. European Journal of Plant Pathology, 150: 57-71. [31] Li P, Geng C, Li L, et al. 2020. Calcium-sorbitol chelating technology and application in potatoes[J]. American Journal of Biochemistry and Biotechnology, 16(1): 96-102. [32] Matheson N K, Myers D K. 1998. Inhibition of germination by glucose analogues that are hexokinase substrates[J]. Phytochemistry, 48: 241-248. [33] Mijailovic N, Nesler A, Perazzolli M, et al. 2021. Rare sugars: Recent advances and their potential role in sustainable crop protection[J]. Molecules, 26(6): 1720. [34] Mijailovic N, Richet N, Villaume S, et al. 2022. D-Tagatose based product triggers sweet immunity and resistance of grapevine to downy mildew, but not to gray mold disease[J]. Plants, 11(03): 296. [35] Mochizuki S, Fukumoto T, Ohara T, et al. 2020. The rare sugar D-tagatose protects plants from downy mildews and is a safe fungicidal agrochemical[J]. Communications Biology, 3(1): 423. [36] Monnier N, Cordier M, Dahi A, et al. 2020. Semipurified rhamnolipid mixes protect Brassica napus against Lepto sphaeria maculans early infections[J]. Phytopathology, 110(4): 834-842. [37] Nakagawa Y, Kasumi T, Ogihara J, et al. 2020. Erythritol: Another C4 platform chemical in biomass refinery[J]. ACS OMEGA, 5(6): 2520-2530. [38] Oh D K. 2007. Tagatose: Properties, applications, and biotech‐nological processes[J]. Applied Microbiology and Biotechnology, 76(1): 1-8. [39] Park C S, Park C S, Shin K C, et al. 2016. Production of D- psicose from D-fructose by whole recombinant cells with high-level expression of D-psicose 3-epimerase from Agrobacterium tumefaciens[J]. Journal of Bioscience and Bioengineering, 121(2), 186-190. [40] Paulino B N, Molina G, Pastore G M, et al. 2021. Current perspectives in the biotechnological production of sweetening syrups and polyols[J]. Current Opinion in Food Science, 41: 36-43. [41] Perazzolli M, Nesler A, Giovannini O, et al. 2019. Ecological impact of a rare sugar on grapevine phyllosphere microbial communities[J]. Microbiological Research, 232:126387. [42] Rodrigues A I, Gudina E J, Teixeira J A, et al. 2017. Sodium chloride effect on the aggregation behaviour of rhamnolipids and their antifungal activity[J]. Scientific Reports, 7(1): 12907. [43] Roy S, Chikkerur J, Roy S C, et al. 2018. Tagatose as a potential nutraceutical: Production, properties, biological roles, and applications[J]. Journal of Food Science, 83(11): 2699-2709. [44] Salek K, Euston S R. 2019. Sustainable microbial biosurfactants and bioemulsifiers for commercial exploitation[J]. Process Biochemistry, 85: 143-155. [45] Sato M, Kurose H, Yamasaki T, et al. 2008. Potential anthelmintic: D-psicose inhibits motility, growth and reproductive maturity of L1 larvae of Caenorhabditis elegans[J]. Journal of Natural Medicines, 62(2): 244-246. [46] Scanga S E, Hasanspahic B, Zvornicanin E, et al. 2018. Erythritol, at insecticidal doses, has harmful effects on two common agricultural crop plants[J]. PLOS ONE, 13(4): e0192749. [47] Schmidt-Jefferis R A, Beers E H, Smytheman P, et al. 2021. Erythritol, an artificial sweetener, is acaricidal against pest mites and minimally harmful to a predatory mite[J]. Journal of Economic Entomology, 114(4): 1701-1708. [48] Seo M J, Choi J H, Kang S H, et al. 2017. Characterization of L-rhamnose isomerase from Clostridium stercorarium and its application to the production of D-allose from D-allulose (D-psicose)[J]. Biotechnology Letter, 40(2): 325-334. [49] Sha R, Jiang L, Meng Q, et al. 2012. Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens[J]. Journal of Basic Microbiology, 52(4): 458-466. [50] Siew B T, Jana C. L, Jin K J, Man-Yeonet al. 2017. Effect of erythritol formulation on the mortality, fecundity and physiological excretion in Drosophila suzukii[J]. Journal of Insect Physiology, 101: 178-184. [51] Tebayashi S, Onishi S, Seo K, et al. 2021. Identification of allitol and D-allulose from Itea virginica as insect growth inhibitors for the control of Mediterranean flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae)[J]. Applied Entomology and Zoology, 56: 357-364. [52] Wang S, Mulligan C N. 2009. Rhamnolipid biosurfactant-en‐hanced soil flushing for the removal of arsenic and heavy metals from mine tailings[J]. Process Biochemis try, 44(3): 296-301. [53] Wang Y, Carder H M, Wendlandt A E. 2020. Synthesis of rare sugar isomers through site-selective epimerization[J]. Nature, 578: 403-408. [54] Wang R, Xu X, Yao X, et al. 2021. Enhanced isomerization of rare sugars by ribose-5-phosphate isomerase A from Ochrobactrum sp. CSL1[J]. Enzyme and Microbial Technology, 148: 109789. [55] Wentz K, Cooper W R, Horton D R, et al. 2020. The artificial sweetener, erythritol, has insecticidal properties against pear psylla (Hemiptera: Psyllidae)[J]. Journal of Economic Entomology, 113(5): 2293-2299. [56] Xue J, Wang S, You X, et al. 2011. Multi-residue determination of plant growth regulators in apples and tomatoes by liquid chromatography/tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 25(21): 3289-3297. [57] Yan F, Xu S, Chen Y, et al. 2014. Effect of rhamnolipids on Rhodotorula glutinis biocontrol of Alternaria alternata infection in cherry tomato fruit[J]. Postharvest Biology and Technology, 97: 32-35. [58] Yang J, Tian C, Zhang T, et al. 2019. Development of food- grade expression system for D-allulose 3-epimerase preparation with tandem isoenzyme genes in Corynebac terium glutamicum and its application in conversion of cane molasses to D-allulose[J]. Biotechnology and Bio‐engineering, 116(4), 745-756. [59] Zhang W, Zhang T, Jiang B, et al. 2017. Enzymatic approaches to rare sugar production[J]. Biotechnology Advances, 35(2): 267-274. [60] Zhang H, Jiang M, Song F. 2020a. D-allose is a critical regulator of inducible plant immunity in tomato[J]. Physio logical and Molecular Plant Pathology, 111: 101507. [61] Zhang X, Xu X, Yao X, et al. 2020b. Exploring multifunctional residues of ribose-5-phosphate isomerase B from Ochrobactrum sp. CSL1 enhancing isomerization of D?allose[J]. Journal of Agriculture and Food Chemistry, 68(11), 3539-3547.