XIA Wen-Qiang*, GAO Li-Dan*, ZHANG Ya-Fen, YU Xiao-Ping, YE Zi-Hong**
Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine /College of Life Sciences, China Jiliang University, Hangzhou 310018, China
Abstract:Ustilago maydis is a well-established model system for biotrophic fungal plant pathogens. Domesticated maize and its wild progenitor teosinte (both Zea mays) are its obligated host plant. U. maydis establishes a comprehensive relationship with their host to support the infection process. Central to this strategy is to secrete an arsenal of protein effectors, which can suppress plant defense responses, modulate host metabolism, or induce plant tumors to facilitate the growth and development of the pathogen. Since the functional redundancy and the lack of recognizable domain, it was very difficult for effector identification and functional study. With the development of next-generation sequencing, comparative transcriptome and comparative genome provide an excellent chance for effector research. In this review, we discuss new insights into the biological function, transcriptional regulation, and post-translation modification of effectors. Highlight its functions in a preventing cell wall reinforcement, suppressing reactive oxygen species (ROS) accumulation and programmed cell death, regulating hormone metabolism, and inducing plant tumors. This paper is helpful to understand the infection strategy of biotrophic fungi and identify relevant effectors.
[1] 李智敏, 严理, 严准. 2016. 玉米瘤黑粉菌的寄生策略及其调控机制[J]. 微生物学报, 56(09): 1385-1397. (Li Z M, Yan L, Yan Z. 2016. Parasitic strategy and regulation mechanism of Ustilago maydis-A review[J]. Acta Microbiologica Sinica, 56(9): 1385-1397.) [2] 罗西, 刘蒋琼, 张申申等. 2020. 玉米黑粉菌致病的分子机制研究进展[J]. 植物科学学报, 38(06): 853-861. (Luo X, Liu J Q, Zhang S S, et al. 2020, Molecular mechanism of Ustilago maydis pathogenicity[J]. Plant Science Journal, 38(6): 853-861.) [3] Ali S, Laurie JD, Linning R, et al.2014. An immunity-triggering effector from the barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution[J]. PLoS Pathogens, 10(7): e1004223. [4] Alonso APM, Ali S, Song X, et al.2020. UhAVR1, an HR-triggering avirulence effector of Ustilago hordei, is secreted via the ER-Golgi pathway, localizes to the cytosol of barley cells during in planta-expression, and contributes to virulence early in infection[J]. Journal of Fungi, 6(3): 178. [5] Altegoer F, Weiland P, Giammarinaro P I, et al.2020. The two paralogous kiwellin proteins KWL1 and KWL1-b from maize are structurally related and have overlapping functions in plant defense[J]. Journal of Biological Chemistry, 295(23): 7816-7825. [6] Banuett F, Herskowitz I.1996. Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis[J]. Development, 122(10): 2965-2976. [7] Barrett L G, Kniskern J M, Bodenhausen N, et al.2009. Continua of specificity and virulence in plant host-pathogen interactions: causes and consequences[J]. New Phytologist, 183(3): 513-529. [8] Begerow D, Stoll M, Bauer R.2006. A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data[J]. Mycologia, 98(6): 906-916. [9] Benevenuto J, Teixeira-Silva N S, Kuramae E E, et al.2018. Comparative genomics of smut pathogens: Insights from orphans and positively selected genes into host specialization[J]. Frontiers in Microbiology, 9: 660. [10] Brachmann A, Weinzierl G, Kämper J, et al.2001. Identification of genes in the bW/bE regulatory cascade in Ustilago maydis[J]. Molecular Microbiology, 42(4): 1047-1063. [11] Brefort T, Doehlemann G, Mendoza-Mendoza A, et al.2009. Ustilago maydis as a pathogen[J]. Annual Review of Phytopathology, 47: 423-445. [12] Brefort T, Tanaka S, Neidig N, et al.2014. Characterization of the largest effector gene cluster of Ustilago maydis[J]. PLoS Pathogens, 10(7): e1003866. [13] Castanheira S, Mielnichuk N, Perez-Martin J.2014. Programmed cell cycle arrest is required for infection of corn plants by the fungus Ustilago maydis[J]. Development, 141(24): 4817-4826. [14] Castanheira S, Pérez-Martín J.2015. Appressorium formation in the corn smut fungus Ustilago maydis requires a G2 cell cycle arrest[J]. Plant Signaling & Behavior, 10(4): e1001227. [15] Couturier M, Mathieu Y, Li A, et al.2016. Characterization of a new aryl-alcohol oxidase secreted by the phytopathogenic fungus Ustilago maydis[J]. Applied Microbiology and Biotechnology, 100(2): 697-706. [16] Darino M, Chia K S, Marques J, et al.2021. Ustilago maydis effector Jsi1 interacts with Topless corepressor, hijacking plant JA/ET signaling[J]. New Phytologist. 229: 3393-3407. [17] Djamei A, Schipper K, Rabe F, et al.2011. Metabolic priming by a secreted fungal effector[J]. Nature, 478(7369): 395-398. [18] Doehlemann G, Reissmann S, Assmann D, et al.2011. Two linked genes encoding a secreted effector and a membrane protein are essential for Ustilago maydis-induced tumour formation[J]. Molecular Microbiology, 81(3): 751-766. [19] Doehlemann G, Wahl R, Horst R J, et al.2008. Reprogramming a maize plant: Transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis[J]. Plant Journal, 56(2): 181-195. [20] Doehlemann G, van der Linde K, Assmann D, et al.2009. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells[J]. PLoS Pathogens, 5(2): e1000290. [21] Dutheil J Y, Mannhaupt G, Schweizer G, et al.2016. A tale of genome compartmentalization: The evolution of virulence clusters in smut fungi[J]. Genome Biology and Evolution, 8(3): 681-704. [22] Fernandez-Alvarez A, Elias-Villalobos A, Ibeas J I.2009. The O-mannosyltransferase PMT4 is essential for normal appressorium formation and penetration in Ustilago maydis[J]. Plant Cell, 21(10): 3397-3412. [23] Fernandez-Alvarez A, Marin-Menguiano M, Lanver D, et al.2012. Identification of O-mannosylated virulence factors in Ustilago maydis[J]. PLoS Pathogens, 8(3): e1002563. [24] Ferris A C, Walbot V.2020. Understanding Ustilago maydis infection of multiple maize organs[J]. Journal of fungi, 7(1): 8. [25] Froeliger E H, Leong S A.1991. The a mating-type alleles of Ustilago maydis are idiomorphs[J]. Gene, 100: 113-122. [26] Gao L, Kelliher T, Nguyen L, et al.2013. Ustilago maydis reprograms cell proliferation in maize anthers[J]. The Plant Journal, 75(6): 903-914. [27] Glazebrook J.2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annual Review of Phytopathology, 43: 205-227. [28] Han X, Altegoer F, Steinchen W, et al.2019. A kiwellin disarms the metabolic activity of a secreted fungal virulence factor[J]. Nature, 565(7741): 650-653. [29] Han X, Kahmann R.2019. Manipulation of phytohormone pathways by effectors of filamentous plant pathogens[J]. Frontiers in Plant Science, 10: 822. [30] Heimel K, Freitag J, Hampel M, et al.2013. Crosstalk between the unfolded protein response and pathways that regulate pathogenic development in Ustilago maydis[J]. The Plant Cell, 25(10): 4262. [31] Heimel K, Scherer M, Schuler D, et al.2010a. The Ustilago maydis Clp1 protein orchestrates pheromone and b-dependent signaling pathways to coordinate the cell cycle and pathogenic development[J]. Plant Cell, 22(8): 2908-2922. [32] Heimel K, Scherer M, Vranes M, et al.2010b. The transcription factor Rbf1 is the master regulator for b-mating type controlled pathogenic development in Ustilago maydis[J]. PLoS Pathogens, 6(8): e1001035. [33] Hemetsberger C, Herrberger C, Zechmann B, et al.2012. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity[J]. PLoS Pathogens, 8(5): e1002684. [34] Hemetsberger C, Mueller A N, Matei A, et al.2015. The fungal core effector Pep1 is conserved across smuts of dicots and monocots[J]. New Phytologist, 206(3): 1116-1126. [35] Hetz C, Papa F R.2018. The unfolded protein response and cell fate control[J]. Molecular Cell, 69(2): 169-181. [36] Hof A, Zechmann B, Schwammbach D, et al.2014. Alternative cell death mechanisms determine epidermal resistance in incompatible barley-Ustilago interactions[J]. Molecular Plant-Microbe Interactions, 27(5): 403-414. [37] Horst RJ, Doehlemann G, Wahl R, et al.2010. Ustilago maydis infection strongly alters organic nitrogen allocation in maize and stimulates productivity of systemic source leaves[J]. Plant Physiology, 152(1): 293-308. [38] Hoser R, Żurczak M, Lichocka M, et al.2013. Nucleocytoplasmic partitioning of tobacco N receptor is modulated by SGT1[J]. New Phytologist, 200(1): 158-171. [39] Jones J D, Dangl J L.2006. The plant immune system[J]. Nature, 444(7117): 323-329. [40] Kadota Y, Shirasu K.2012. The HSP90 complex of plants[J]. Biochimica et Biophysica Acta-Molecular Cell Research, 1823(3): 689-697. [41] Kaffarnik F, Müller P, Leibundgut M, et al.2003. PKA and MAPK phosphorylation of Prf1 allows promoter discrimination in Ustilago maydis[J]. EMBO Journal, 22(21): 5817-5826. [42] Kamper J, Kahmann R, Bolker M, et al.2006. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis[J]. Nature, 444(7115): 97-101. [43] Kitagawa K, Skowyra D, Elledge S J, et al.1999. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex[J]. Molecular Cell, 4(1): 21-33. [44] Krombach S, Reissmann S, Kreibich S, et al.2018. Virulence function of the Ustilago maydis sterol carrier protein 2[J]. New Phytologist, 220(2): 553-566. [45] Kubicek C P, Starr T L, Glass N L.2014. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi[J]. Annual Review of Phytopathology, 52(1): 427-451. [46] Lanver D, Berndt P, Tollot M, et al.2014. Plant surface cues prime Ustilago maydis for biotrophic development[J]. PLoS Pathogens, 10(7): e1004272. [47] Lanver D, Müller A N, Happel P, et al.2018. The biotrophic development of Ustilago maydis studied by RNA-seq analysis[J]. Plant Cell, 30(2): 300-323. [48] Lanver D, Mendoza-Mendoza A, Brachmann A, et al.2010. Sho1 and Msb2-related proteins regulate appressorium development in the smut fungus Ustilago maydis[J]. Plant Cell, 22(6): 2085-2101. [49] Lanver D, Tollot M, Schweizer G, et al.2017. Ustilago maydis effectors and their impact on virulence[J]. Nature Reviews Microbiology, 15(7): 409-421. [50] León-Ramírez C, Cabrera-Ponce J, Martínez-Espinoza A, et al.2004. Infection of alternative host plant species by Ustilago maydis[J]. New Phytologist, 164(2): 337-346. [51] Leuthner B, Aichinger C, Oehmen E, et al.2005. A H2O2-producing glyoxal oxidase is required for filamentous growth and pathogenicity in Ustilago maydis[J]. Molecular Genetics and Genomics, 272(6): 639-650. [52] Lo Presti L, Lanver D, Schweizer G, et al.2015. Fungal effectors and plant susceptibility[J]. Annual Review of Plant Biology, 66: 513-545. [53] Ma L S, Wang L, Trippel C, et al.2018. The Ustilago maydis repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize proteins[J]. Nature Communications, 9(1): 1711. [54] Matei A, Ernst C, Gunl M, et al.2018. How to make a tumour: Cell type specific dissection of Ustilago maydis-induced tumour development in maize leaves[J]. New Phytologist, 217(4): 1681-1695. [55] Müller O, Kahmann R, Aguilar G, et al.2008a The secretome of the maize pathogen Ustilago maydis[J]. Fungal Genetics and Biology, ,45: S63-S70. [56] Müller O, Schreier P H, Uhrig J F.2008b. Identification and characterization of secreted and pathogenesis-related proteins in Ustilago maydis[J]. Molecular Genetics and Genomics, 279(1): 27-39. [57] Müller P, Weinzierl G, Brachmann A, et al.2003. Mating and pathogenic development of the smut fungus Ustilago maydis are regulated by one mitogen-activated protein kinase cascade[J]. Eukaryotic Cell, 2(6): 1187. [58] Muller A N, Ziemann S, Treitschke S, et al.2013. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2[J]. PLoS Pathogens, 9(2): e1003177. [59] Muskett P, Parker J.2003. Role of SGT1 in the regulation of plant R gene signalling[J]. Microbes and infection, 5(11): 969-976. [60] Nakano M, Ichinose Y, Mukaihara T.2021. Ralstonia solanacearum type III effector RipAC targets SGT1 to suppress effector-triggered immunity[J]. Plant & Cell Physiology, 61(2): 2067-2076. [61] Newton MS, Cabezas-Perusse Y, Tong CL, et al.2020. In vitro selection of peptides and proteins-advantages of mRNA display. ACS Synthetic Biology, 9(2): 181-190. [62] Okmen B, Kemmerich B, Hilbig D, et al.2018. Dual function of a secreted fungalysin metalloprotease in Ustilago maydis[J]. New Phytologist, 220(1): 249-261. [63] Pathi K M, Rink P, Budhagatapalli N, et al.2020. Engineering smut resistance in maize by site-directed mutagenesis of LIPOXYGENASE 3[J]. Frontiers in Plant Science, 11: 543895. [64] Peng Y, Van Wersch R, Zhang Y.2017. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity[J]. Molecular Plant-Microbe Interactions, 31(4): 403-409. [65] Pinter N, Hach C A, Hampel M, et al.2019. Signal peptide peptidase activity connects the unfolded protein response to plant defense suppression by Ustilago maydis[J]. PLoS Pathogens, 15(4): e1007734. [66] Rabe F, Ajami-Rashidi Z, Doehlemann G, et al.2013. Degradation of the plant defence hormone salicylic acid by the biotrophic fungus Ustilago maydis[J]. Molecular Microbiology, 89(1): 179-188. [67] Rabe F, Seitner D, Bauer L, et al.2016. Phytohormone sensing in the biotrophic fungus Ustilago maydis - the dual role of the transcription factor Rss1[J]. Molecular Microbiology, 102(2): 290-305. [68] Redkar A, Hoser R, Schilling L, et al.2015. A secreted effector protein of Ustilago maydis guides maize leaf cells to form tumors[J]. Plant Cell, 27(4): 1332-1351. [69] Redkar A, Matei A, Doehlemann G.2017. Insights into host cell modulation and induction of new cells by the corn smut Ustilago maydis[J]. Frontiers in Plant Science, 8: 899. [70] Schmitz L, McCotter S, Kretschmer M, et al.2018. Transcripts and tumors: Regulatory and metabolic programming during biotrophic phytopathogenesis[J]. F1000Res, 7: 1812. [71] Schuster M, Schweizer G, Kahmann R.2018. Comparative analyses of secreted proteins in plant pathogenic smut fungi and related basidiomycetes[J]. Fungal Genetics and Biology, 112: 21-30. [72] Schweizer G, Münch K, Mannhaupt G, et al.2018. Positively selected effector genes and their contribution to virulence in the smut fungus Sporisorium reilianum[J]. Genome Biology and Evolution, 10(2): 629-645. [73] Seitner D, Uhse S, Gallei M, et al.2018. The core effector Cce1 is required for early infection of maize by Ustilago maydis[J]. Molecular Plant Pathology, 19(10): 2277-2287. [74] Sharma R, Mishra B, Runge F, et al.2014. Gene loss rather than gene gain is associated with a host jump from monocots to dicots in the smut fungus Melanopsichium pennsylvanicum[J]. Genome Biology and Evolution, 6(8): 2034-2049. [75] Sharma R, Ökmen B, Doehlemann G, et al.2019. Saprotrophic yeasts formerly classified as Pseudozyma have retained a large effector arsenal, including functional Pep1 orthologs[J]. Mycological Progress, 18(5): 763-768. [76] Song J, Durrant W E, Wang S, et al.2011. DNA repair proteins are directly involved in regulation of gene expression during plant immune response[J]. Cell Host Microbe, 9(2): 115-124. [77] Stirnberg A, Djamei A.2016. Characterization of ApB73, a virulence factor important for colonization of Zea mays by the smut Ustilago maydis[J]. Molecular Plant Pathology, 17(9): 1467-1479. [78] Strater N, Schnappauf G, Braus G, et al.1997. Mechanisms of catalysis and allosteric regulation of yeast chorismate mutase from crystal structures[J]. Structure, 5(11): 1437-1452. [79] Tanaka S, Brefort T, Neidig N, et al.2014. A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize[J]. eLife, 3: e01355. [80] Tanaka S, Gollin I, Rossel N, et al.2020. The functionally conserved effector Sta1 is a fungal cell wall protein required for virulence in Ustilago maydis[J]. New Phytologist, 227(1): 185-199. [81] Tanaka S, Schweizer G, Rossel N, et al.2019. Neofunctionalization of the secreted Tin2 effector in the fungal pathogen Ustilago maydis[J]. Nature Microbiology, 4(2): 251-257. [82] Tollot M, Assmann D, Becker C, et al.2016. The WOPR protein Ros1 is a master regulator of sporogenesis and late effector gene expression in the maize pathogen Ustilago maydis[J]. PLoS Pathogens, 12(6): e1005697. [83] Underwood W.2012. The plant cell wall: a dynamic barrier against pathogen invasion[J]. Frontiers in Plant Science, 3: 85. [84] van der Linde K, Hemetsberger C, Kastner C, et al.2012a. A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases[J]. Plant Cell, 24(3): 1285-1300. [85] van der Linde K, Mueller A N, Hemetsberger C, et al.2012b. The maize cystatin CC9 interacts with apoplastic cysteine proteases[J]. Plant Signaling & Behavior, 7(11): 1397-1401. [86] Villamil J C M, Mueller A N, Demir F, et al.2019. A fungal substrate mimicking molecule suppresses plant immunity via an inter-kingdom conserved motif[J]. Nature Communications, 10(1): 1576. [87] Voss M, Künzel U, Higel F, et al.2014. Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation[J]. EMBO Journal, 33(24): 2890-2905. [88] Xia W, Yu X, Ye Z.2020. Smut fungal strategies for the successful infection[J]. Microbial Pathogenesis, 2020,142: 104039. [89] Yoshida K, Saunders D G O, Mitsuoka C, et al.2016. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements[J]. BMC Genomics17 (1): 370. [90] Zahiri A, Heimel K, Wahl R, et al.2010. The Ustilago maydis forkhead transcription factor Fox1 is involved in the regulation of genes required for the attenuation of plant defenses during pathogenic development[J]. Molecular Plant-Microbe Interactions, 23(9): 1118-1129. [91] Zheng Y, Kief J, Auffarth K, et al.2008. The Ustilago maydis Cys2His2-type zinc finger transcription factor Mzr1 regulates fungal gene expression during the biotrophic growth stage[J]. Molecular Microbiology, 68(6): 1450-1470.