Abstract:Tree frog (Rhacophorus) antimicrobial peptide Cathelicidin is a kind of small molecular peptide with antibacterial activity, which has potential application value in medical treatment, animal husbandry and some other aspects, but its eukaryotic expression is rarely reported. In this study, tree frog antimicrobial peptide Cathelicidin gene was synthesized based on the preferential codon usage of Pichia pastoris, then ligated to the expression vector pPIC9K and transformed into P. pastoris GS115 by electroporation. The positive transformants containing multi-copy gene insertions were screened using high concentration G418 and confirmed by PCR and reverse transcription PCR (RT-PCR). The recombinant Cathelicidin was induced for 72 h with 1.0% methanol, and the supernatant of culture medium was collected for in vitro antibacterial activity detection and toxicity analysis. The results showed that Cathelicidin was expressed successfully in P. pastoris with antibacterial activity against gram-positive bacteria (Staphylococcus aureus) and gram-negative bacteria (Escherchia coli), the minimal inhibitory concentration were (1.175±0.002) and (2.35±0.001) μg/mL respectively, and it was no hemolysis under the minimum inhibitory concentration. This study provides basic data support for industrial production of a new tree frog antimicrobial peptide.
王莲哲, 刘士俊, 刘佳乐, 洪军. 树蛙抗菌肽Cathelicidin在毕赤酵母中的表达及抑菌活性分析[J]. 农业生物技术学报, 2021, 29(1): 67-72.
WANG Lian-Zhe, LIU Shi-Jun, LIU Jia-Le, HONG Jun. Expression of Tree Frog (Rhacophorus) Cathelicidin Peptide in Pichia pastoris and Its Antibacterial Activity Analysis. 农业生物技术学报, 2021, 29(1): 67-72.
[1] 程福珍, 洪燕, 郑荣泉, 等. 2019. 棘胸蛙抗菌肽Spinosan-D的原核表达及活性检测[J]. 浙江农业科学, 60(7): 1250-1255. (Cheng F Z, Hong Y, Zheng R Q, et al. 2019. Prokaryotic expression and activity detection of an antibacterial peptide Spinosan-D from Rana Spinosa[J]. Zhejiang Agricultural Science, 60(7): 1250-1255) [2] 冯永, 邹亚林, 高丹丹. 2015.蛙类抗菌肽的研究进展[J]. 农产品加工, (01): 57-59. (Feng Y, Zhou Y L, Gao D D. 2015. Research progress of rana antibacterial peptides[J]. Farm Products Processing, (1): 57-59.) [3] 郝镯, 王承宇, 孟轲音, 等. 2018. 野生黑斑蛙皮肤抗菌肽快速分离、纯化方法的建立[J]. 黑龙江畜牧兽医, (19): 176-179. (Hao Z, Wang C Y, Meng K Y, et al. 2018. Establishment of a rapid method for isolation and purification of antimicrobial peptides from the skin of wild Rana nigromaculata[J]. Heilongjiang Animal Science and Veterinary Medicine, (19): 176-179.) [4] 何湘鹃, 林震宇, 原丽红, 等. 2019. 抗菌肽的现状与未来[J]. 热带医学杂志, 19(2): 253-256. (He X J, Lin Z Y, Yuan L H, et al. 2019. Current status and future of antimicrobial peptides[J]. Journal of Tropical Medicine, 19(2): 253-256.) [5] 黄佳明, 姜宁, 张爱忠. 2019. 基因工程菌生产抗菌肽的研究进展[J]. 微生物学通报, 46(3): 221-226. (Huang J M, Jiang N, Zhang A Z. 2019. Progress in engineering bacteria producing antibacterial peptides[J]. Microbiology China, 46(3): 221-226.) [6] 刘悦, 詹忠根, 朱兵, 等. 2018. 棘胸蛙抗菌肽Spinosan-C的串联表达与活性检测[J]. 生物工程学报, 34(1): 132-139. (Liu Y, Zhan Z G, Zhu B, et al. 2018. Tandem expression and activity determination of antibacterial peptide Spinosan-C from Paa spinosa[J]. Chinese Journal of Biotechnology. 34(1): 132-139.) [7] 马萍, 薛林贵, 尚海, 等. 2018. 泥鳅抗菌肽在毕赤酵母SMD1168中的高效表达及活性检测[J]. 微生物学通报, 45(5): 970-980. (Ma P, Xue L G, Shang H, et al. 2018. High-level expression in Pichia pastoris SMD1168 of misgurin and its antimicrobial activity[J]. Microbiology China, 45(5): 970-980.) [8] 宋长丰, 陶妍, 赵冬梅, 等. 2015. 斑点叉尾鮰铁调素成熟肽在毕赤酵母中的表达及其抑菌活性[J]. 农业生物技术学报, 23(3): 380-387. (Song C F, Tao Y, Zhao D M, et al. 2015. Expression of channel catfish (Ictalurus punctatus) hepcidin mature peptide in Pichia pastoris and its antibacterial activity. Journal of Agricultural Biotechnology[J]. 23(3): 380-387.) [9] 孙长峰, 仲维霞, 王洪法. 2013. 抗菌肽作用机制及改造策略研究进展[J]. 中国病原生物学杂志, 8(7): 89-93. (Sun C F, Zhong W X, Wang H F. 2013. Advances in the study of the mechanisms of action of antibacterial peptides and strategies to transform them[J]. Journal of Pathogen Biology, 8(7): 89-93.) [10] 王强厚, 陶妍, 崔旭, 等. 2018. 三疣梭子蟹C型溶菌酶在毕赤酵母中的表达及其抑菌活性[J]. 生物技术通报, 34(10): 135-142. (Wang Q H, Tao Y, Cui X, et al. 2018. Expression of swimming crab (Portunus trituberculatus) C-type lysozyme in Pichia pastoris and its bacteriostatic activity[J]. Biotechnology Bulletin, 34(10): 135-142.) [11] 杨平, 袁奕豪, 杨晓莉, 等. 2016. 抗菌肽高效表达及生产优化研究进展[J]. 生物技术通报, 32(3): 24-30. (Yang P, Yuan Y H, Yang X L, et al. 2016. Research progress of efficient expression and optimization of production of antibacterial peptide[J]. Biotechnology Bulletin, 32(3): 24-30.) [12] 章如安, 杨晟, 邱容得. 2000. 巴斯德毕赤酵母表达体系研究及进展[J]. 微生物学通报, 27(5): 371-373. (Zhang R A.2000. Research and development of Pichia pastoris expression system[J]. Microbiology Bulletin, 27(5): 371-373.) [13] 张亚莉, 陶妍, 谢晶, 等. 2019. 厚壳贻贝Mytilin-1成熟肽在毕赤酵母中的重组表达及其抑菌活性[J]. 生物技术通报, 35(7): 54-60. (Zhang Y L, Tao Y, Xie J, et al. 2019. Recombinant expression of mytiluscoruscus Mytilin-1 mature peptide in Pichia pastoris and its antibacterial activity[J]. Biotechnology Bulletin, 35(7): 54-60.) [14] 朱文, 胡又佳, 谢丽萍. 2018, 毕赤酵母高效表达外源蛋白的相关策略及研究进展[J]. 中国医药工业杂志, 49(4): 417-425. (Zhu W, Hu Y J, Xie L P. 2018. Related strategies and research progress of efficient expression of heterologous proteins in Pichia pastoris[J]. Chinese Journal of Pharmaceuticals, 49(4): 417-425.) [15] Ashcroft J W , Zalinger Z B, Bevier C R, et al. 2007. Antimicrobial properties of two purified skin peptides from the mink frog (Rana septentrionalis) against bacteria isolated from the natural habitat[J]. Comparative Biochemistry and Physiology, Part C, 146(3): 325-330. [16] Deng H, Chen C, Xiao N, et al. 2017. Prokaryotic expression of antimicrobial peptide CATH PR1-2 from the skin of Paa robertingeri in Escherichia coli[J]. Asian Herpetological Research, 8(4): 275-283. [17] Mu L, Zhou L, Yang J, et al. 2017. The first identified cathelicidin from tree frogs possesses anti-inflammatory and partial LPS neutralization activities[J]. Amino Acids, 49: 1571-1585. [18] Qi R H, Chen Y, Guo Z L, et al. 2019. Identification and characterization of two novel cathelicidins from the frog Odorrana livida[J]. Zoological Research, 40(2): 27-34. [19] Wang A L, Wang J, Hong J, et al. 2008. A novel family of antimicrobial peptides from the skin of Amolops loloensis[J]. Biochimie, 6(90): 863-867. [20] Xu X Q, Li J X, Han Q P, et al. 2006. Two antimicrobial peptides from skin secretions of Rana grahami[J]. Toxicon, 47(4): 459-464.