1 Research Centre of Characteristic Fruit Tree / College of Horticulture and Forestry, Xinjiang Agricultural University, Urumqi 830052, China;
2 Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, China;
3 Luntai National Fruit Germplasm Resources Garden, Xinjiang Academy of Agricultural Sciences, Luntai 841600, China
Abstract:Optimizing a flow cytometry method technical scheme for determining genome size and ploidy of local pear (Pyrus) varieties in Xinjiang can detect and identify the genome size and ploidy more efficiently. Different source materials (dry method to store new shoot tender leaves, annual branch hydroponic tender leaves, autumn shoots tender leaves, seed cultivation cotyledon and seed cultivation tender leaves) of local pear varieties in Xinjiang, different mechanical dissociation methods (blade chopped method, grinding method), membrane filtration times (500 mesh filter once and filter twice) and propidium iodide (PI) dyeing liquid dosage (200 and 300 μL) were compared based on the detection results that taken diploid 'Dangshansuli' as reference. The results showed that the genomic size estimation and chromosome ploidy identification of 29 local pear varieties in Xinjiang were carried out by using the optimized detection method. The optimization method as follow: Young leaves which from annual branches hydroponic tender leaves in spring were collected 0.1 g, washed with distilled water and deionized water for 2 to 3 times, respectively. Then wipe it dry and put into a culture dish which had been added with 1 mL precooled woody plant buffer (WPB) dissociation solution, and chopped up quickly with a sharp blade. After chopping, add 1 mL WPB dissociation solution, mix and stand for 2~5 min. The mixture liquid was filtered with 500 mesh membrane into 2.0 mL centrifuge tube and incubated at 4 ℃ for 5 min. The single cell nuclear suspension were got from the treated mixture liquid by centrifuge at 4 ℃ at 1 000 r/min for 5 min. Retain 0.1 mL supernate at bottom and add 200 μL precooled WPB, 200 μL precooled PI, mix well. Place it in refrigerator at 4 ℃ and dye for 10 min without light. After staining, detect it with flow cytometer, and collect 5 000 mononuclear particle granules. Using this method, the results showed that the mean genome size of local pear varieties in Xinjiang detected was (566.5±125.17) Mb. The genome size of 'Yilikamut' was (666.80±154.56) Mb, and it was defined chimera for its chromosome peaks of diploid and triploid appeared simultaneously. The genome sizes of 'Kotoamut', 'Aiwenqieke', and 'Heisuanli' were (721.12±20.87) Mb, (791.33±36.84) Mb and (725.16±76.40) Mb, respectively, which were triploid. The genome size of 'Sha01' was (1032.61±49.41) Mb, which was tetraploid. Among the 24 diploid local pear varieties in Xinjiang, the genome size ranged from (480.95±16.24) to (599.14±38.36) Mb. Among the 3 triploid, the genome size ranged from (721.12±20.87) to (791.33±36.84) Mb. In this study, flow cytometry was optimized to estimate the genomic size and identify the ploidy of local pear varieties in Xinjiang. It overcame the disadvantages of the traditional dyeing method, such as difficulty and time consuming, and the defect was that more detailed chromosome characteristic information could not be obtained. The results of this study can provide technical support for ploidy breeding and genomics research of pear in the future.
[1] 崔金鑫, 李月梅, 张蕊婧,等. 2016. 利用流式细胞仪鉴定山楂种质资源的倍性[J]. 北方园艺, (01): 84-86.
(Cui J X, Li Y M, Zhang R J, et al. 2016. Measuring the ploidy of hawthorn germplasm resources by flow cytometry[J]. Northern Horticulture, (01): 84-86.)
[2] 董中源. 2017. 美洲黑杨自然多倍体筛选与鉴定及群体遗传多样性分析[D]. 硕士学位论文, 南京林业大学, 导师: 尹佟明, pp. 36-37.
(Dong Z Y.2017. Large-scale screening and identification of natural polyploids in populus deltoids and analysis of population genetic diversity[D]. Thesis for M.S., Nanjing Forestry University, Supervisor: Yin T M, pp. 36-37.)
[3] 黄礼森, 李树玲, 蒲富慎. 1986. 我国梨品种染色体数目观察[J]. 中国果树,(01): 12-13, 64-66.
(Huang L S, Li S L, Pu F S.1986. Observation on chromosome number of Chinese pear cultivars[J]. China Fruits,(01): 12-13, 64-66.)
[4] 黄礼森, 孙秉钧, 李树玲, 等. 1983. 梨属植物染色体数目研究又获进展[J]. 山西果树,(04): 19-21, 65.21, 65.)
[5] 景士西. 2011. 园艺植物育种学总论[M]. 北京: 中国农业出版社, pp. 116, 187. (Jing S X. 2011. General Theory of Horticultural Plant Breeding[M]. China Agricultural Press, Beijing, China, pp. 116, 187.)
[6] 柳斌, 任红剑, 李美荣, 等. 2019. 利用流式细胞仪鉴定槭树染色体倍性的方法探究[J]. 山东林业科技, 49(5): 18-21, 25.(Liu B, Ren H J, Li M R, et al. 2019. Research on the method of measuring the ploidy of Acer L by flow cytometry[J]. Shandong Forestry Science and Technology, 49(5): 18-21, 25.)
[7] 刘凤霞. 2018. 新疆库尔勒香梨多倍体诱导和抗寒突变体筛选[D]. 硕士学位论文,西北农林科技大学, 导师: 徐凌飞, pp. 17-20.
(Liu F X.2018. In vitro polyploid induction and selection of cold tolerant variants in Xinjiang 'Koral pragrant' pear[D]. Thesis for M.S., Northwest A&F University. Supervisor: Xu L F, pp. 17-20.)
[8] 刘凤霞, 李京一, 王志刚, 等. 2018. 适合流式细胞仪分析的梨叶片细胞核提取缓冲液筛选[J]. 农业生物技术学报, 26(06): 1034-1042.
(Liu F X, Li J Y, Wang Z G, et al.2018. The screening of the optimum buffer to produce pear (Pyrus) leaf nuclear suspensions for flow cytometry analysis[J]. Journal of Agricultural Biotechnology, 26(06): 1034-1042.)
[9] 李赟, 石荫坪, 束怀瑞, 等. 1998. 利用流式细胞光度术鉴定苹果倍性的研究[J]. 西北植物学报, (04): 26-30.
(Li Y, Shi Y P, Shu H R, et al. 1998. Use of flow contometry for identification of ploidy in apple[J]. Acta Botanica Boreali-Occidentalia Sinica, (04): 26-30.)
[10] 吕顺, 任毅, 王芳, 等. 2018. 利用流式细胞术快速鉴定169份香蕉种质资源的染色体倍性[J]. 果树学报, 35(06): 668-684.
(Lv S, Ren Y, Wang F, et al.2018. Ploidy identification of 169 Musa germplasms by flow cytometry[J]. Journal of Fruit Science, 35(06): 668-684.)
[11] 蒲富慎, 黄礼森, 孙秉均, 等. 1985. 我国野生梨和栽培品种染色体数目观察[J]. 园艺学报,(03): 155-158, 217.158, 217.)
[12] 施春晖, 徐兰兰, 王晓庆, 等. 2014. 流式细胞仪鉴定猕猴桃倍性技术研究[J]. 植物研究, 34(06): 845-849.
(Shi C H, Xu L L, Wang X Q, et al.2014. Identification of kiwifruit ploidy using flow cytometry[J]. Bulletin of Botanical Research, 34(06): 845-849.)
[13] 孙马, 王跃进. 2006. 中国野生葡萄染色体倍性研究[J]. 西北农业学报, (06): 148-152. (Sun M, Wang Y J. 2006. Study on the chromosome ploidy of Chinese wild Vitis species[J]. Acta Agriculturae Boreali-occidentalis Sinica, (06): 148-152.)
[14] 田路明, 齐丹, 曹玉芬, 等. 2018. 利用流式细胞仪鉴定梨种质资源染色体倍性[J]. 中国果树, (03): 29-32.
(Tian L M, Qi D, Cao Y F, et al. 2018. The ploidy of pear germplasm was determined by flow cytometry[J]. China Fruits, (03): 29-32.)
[15] 田新民, 周香艳, 弓娜. 2011. 流式细胞术在植物学研究中的应用—检测植物核DNA含量和倍性水平[J]. 中国农学通报, 27(09): 21-27.
(Tian X M, Zhou X Y, Gong N.2011. Applications of flow cytometry in plant research-analysis of nuclear DNA content and ploidy level in plant cells[J]. Chinese Agricultural Science Bulletin, 27(09): 21-27.)
[16] 王利虎, 吕晔, 罗智, 等. 2018. 流式细胞术估测枣染色体倍性和基因组大小方法的建立及应用[J]. 农业生物技术学报, 26(03): 511-520.
(Wang L H, Lv Y, Luo Z, et al.2018. Establishment and application of a method for chromosome ploidy identification and genome size estimation using flow cytometry in Ziziphus jujube[J]. Journal of Agricultural Biotechnology, 26(03): 511-520.)
[17] 王晓庆, 骆军, 施春晖, 等. 2014. 一种利用流式细胞术鉴定梨倍性的方法[J]. 中国农学通报, 30(31): 46-51.
(Wang X Q, Luo J, Shi C H, et al.2014. A method of ploidy identification in pear using flow cytometry[J]. Chinese Agricultural Science Bulletin, 30(31): 46-51.)
[18] 汪艳, 肖媛, 刘伟, 等. 2015. 流式细胞仪检测高等植物细胞核DNA含量的方法[J]. 植物科学学报, 33(01): 126-131.
(Wang Y, Xiao Y, Liu W, et al.2015. Operation skills of flow cytometer for detecting nuclear DNA contents in higher plant cells[J]. Plant Science Journal, 33(01): 126-131.)
[19] 吴丽萍, 唐岩, 李颖岳, 等. 2013. 枣和酸枣基因组大小测定[J]. 北京林业大学学报, 35(03): 77-83.
(Wu L P, Tang Y, Li Y Y, et al.2013. Estimation of genome size of Ziziphus jujuba and Z. acdiojujuba[J]. Journal of Beijing Forestry University, 35(03): 77-83.)
[20] 吴雅琴, 周锡明, 陈龙, 等. 2014. 利用流式细胞术鉴定甜樱桃砧木细胞核DNA含量和染色体倍性[J]. 果树学报, 31(S1): 48-52.
(Wu Y Q, Zhou X M, Chen L, et al.2014. Nuclear DNA content and chromosome ploidy determination of sweet cherry rootstock by flow cytometry[J]. Journal of Fruit Science, 31(S1): 48-52.)
[21] 于红梅, 王静, 赵密珍, 等. 2012. 利用流式细胞仪检测草莓倍性方法的优化[J]. 南方农业学报, 43(10): 1530-1533.
(Yu H M, Wang J, Zhao M Z, et al.2012. Optimization of strawberry ploidy identification method using flow cytometry[J]. Journal of Southern Agriculture, 43(10): 1530-1533.)
[22] Doležel J, Bartoš J.2005. Plant DNA flow cytometry and estimation of nuclear genome size[J]. Annals of Botany, 95(1): 99-110.
[23] Georgiev V, Weber J, Bley T, et al.2009. Improved procedure for nucleus extraction for DNA measurements by flow cytometry of red beet (Beta vulgaris L.) hairy roots[J]. Journal of Bioscience and Bioengineering, 107(4): 439-441.
[24] Greilhuber J, Doležel J, Lysák M A, et al.2005. The origin, evolution and proposed stabilization of the terms 'genome size' and 'c-value' to describe nuclear DNA contents[J]. Annals of Botany, 95(1): 255-260.
[25] Hopping M E.1993. Preparation and preservation of nuclei from plant tissues for quantitative DNA analysis by flow cytometry[J]. New Zealand Journal of Botany, 31: 391-401.
[26] Jedrzejczyk I, Sliwinska E.2010. Leaves and seeds as materials for flow cytometric estimation of the genome size of 11 rosaceae woody species containing DNA-staining inhibitors[J]. Journal of Botany, 1-9. https://doi.org/10.1155/2010/930895
[27] Kadota M, Niimi Y.2002. In vitro induction of tetraploid plants from a diploid Japanese pear cultivar (Pyrus pyrifolia N. cv. Hosui)[J]. Plant Cell Reports, 21(3): 282-286.
[28] Kasten F H.2003. Robert feulgen and his histochemical reaction for DNA[J]. Stain Technology, 78(1): 45-49.
[29] Loureiro J, Rodriguez E, Doležel J, et al.2007. Two new nuclear isolation buffers for plant DNA flow cytometry: A test with 37 species[J]. Annals of Botany, 100(4): 875-888.
[30] Marie D, Brown S C.1993. A cytometric exercise in plant DNA histograms, with 2C values for 70 species[J]. Biology of the Cell, 78(1-2): 41-51.
[31] Noori S A S, Norouzi M, Karimzadeh G, et al.2017. Effect of colchicine-induced polyploidy on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.)[J]. Plant Cell Tissue & Organ Culture, 130(3): 543-551.
[32] Phillips W D, Ranney T G, Touchell D H, et al.2016. Fertility and reproductive pathways of triploid flowering pears (Pyrus sp.)[J]. HortScience, 51(8): 968-971.
[33] Postman J, Bassil N, Bell R.2015. Ploidy of USDA world pear germplasm collection determined by flow cytometry[J]. Acta Horticulturae, (1094): 75-81.
[34] Suchánková P, Kubaláková M, Koválová P, et al.2006. Dissection of the nuclear genome of barley by chromosome flow sorting[J]. Theoretical and Applied Genetics, 113(4): 651-659.
[35] Suda J, Trávníček P.2006. Reliable DNA Ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry-new prospects for plant research[J]. Cytometry Part A, 69(4): 273-280.
[36] Sun Q R, Sun H Y, Li L G, et al.2009. In vitro colchicine-induced polyploid plantlet production and regeneration from leaf explants of the diploid pear (Pyrus communis L.) cultivar, 'Fertility'[J]. Journal of Pomology & Horticultural Science, 84(5): 548-552.
[37] Ulrich I, Ulrich W.1991. High-resolution flow cytometry of nuclear DNA in higher plants[J]. Protoplasma, 165(1): 212-215.
[38] Vujović T, Ružić D, Cerović R, et al.2010. Adventitious regeneration in blackberry (Rubus fruticosus L.) and assessment of genetic stability in regenerants[J]. Plant Growth Regulation, 61(3): 265-275.
[39] Wang X Q, Wang H H, Shi C H, et al.2015. Morphological, cytological and fertility consequences of a spontaneous tetraploid of the diploid pear (Pyrus pyrifolia Nakai) cultivar 'Cuiguan'[J]. Scientia Horticulturae, 189: 59-65.
[40] Wu J, Wang Z W, Shi Z B, et al.2013. The genome of the pear (Pyrus bretschneideri Rehd.)[J]. Genome Research, 23(2): 396-408.