Analysis of Differentially Expressed Transcription Factor Genes in Maize (Zea mays) Under Drought Stress and Re-watering
ZHANG Peng-Yu1,2, WANG Guo-Rui2, CAO Li-Ru1,2, YUAN Zhen2, KU Li-Xia1,2, WANG Tong-Chao1,2*, WEI Li2*
1 The Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou 450002, China; 2 College of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
Abstract:Drought stress is a major limiting factor affecting high and stable yield of crop and the transcription factors (TFs) play crucial roles in plant response to drought stress. In this study, 20% PEG6000 was used to simulate drought stress in the seedling stage, and the changes in the expression of expressed transcription genes in maize (Zea mays) leaves under drought stress for 60, 96 h and re-watering after 3 d were analyzed by RNA-sequence (RNA-seq) technology. The results showed that, a total of 56 transcription factor families were detected in transcriptome sequencing, with a total of 2 270 transcription factor genes, and the number of differentially expressed transcription factor genes was 556, accounting for 24.49% of the total. Compared with the control, the number of differentially expressed transcription factor genes was the lowest under drought stress at 96 h. After re-watering 3 d, the number of differentially expressed transcription factor genes was the highest and it was mainly down-regulated. Among the differentially expressed TF genes, members of the bHLH (basic helix-loop-helix), C2H2, ERF (ethylene responsive factor), MYB (v-avian myeloblastosis viral oncogene homolog), NAC (NAM, ATAF1/2, CUC1/2) and WRKY families were more abundant. According to the Venn plot analysis of differentially expressed transcription factor genes, a total of 37 transcription factor genes were differentially expressed at 3 treatment points under drought stress and rewatering, distributed among 15 transcription factor families, of which the number of WRKY family was the most enriched. The results would provide theoretical basis for further exploring the molecular response mechanism of maize transcription factor family to drought stress.
[1] 丁红, 张智猛, 戴良香, 等. 2013. 干旱胁迫对花生根系生长发育和生理特性的影响[J]. 应用生态学报, 24(6): 1586-1592. (Ding H, Zhang Z M, Dai L X, et al.2013. Effects of drought stress on the root growth and development and physiological characteristics of peanut[J]. Chinese Journal of Applied Ecology, 24(6): 1586-1592.) [2] 李少昆, 赵久然, 董树亭, 等. 2017. 中国玉米栽培研究进展与展望[J]. 中国农业科学, 50(11): 1941-1959. (Li S K, Zhao J R, Dong S T, et al.2017. Advances and prospects of maize cultivation in China[J]. Scientia Agricultura Sinica, 50(11): 1941-1959.) [3] 黎裕, 王天宇, 石云素, 等. 2004. 玉米抗旱性的QTL分析研究进展和发展趋势[J]. 干旱地区农业研究, 22(1): 32-39. (Li Y, Wang T Y, Shi S Y, et al.2004. Advances and prospects on QTL analysis of drought tolerance of maize (Zea mays L.)[J]. Agricultural Research in the Arid Areas, 22(1): 32-39.) [4] 林海建, 张志明, 沈亚欧, 等. 2009. 基因芯片研究植物逆境基因的表达新进展[J]. 遗传, 31(12):1192-1204. (Lin H J, Zhang Z M, Shen Y O, et al.2009. Advances of microarray analysis on plant gene expression under environmental stresses[J]. Hereditas, 31(12): 1192-1204.) [5] 巩檑, 张丽, 聂峰杰, 等. 2015. 旱胁迫和复水处理后马铃薯转录因子的转录组分析[J]. 分子植物育种, 8: 1745-1756. (Gong L, Zhang L, Nie F J, et al.2015. Transcriptome analysis on transcription factors of potato (Solanum tuberosum) under drought stress and rehydration treatment[J]. Molecular Plant Breeding, 8: 1745-1756.) [6] 莫纪波, 李大勇, 张慧娟, 等. 2011. ERF转录因子在植物对生物和非生物胁迫反应中的作用[J]. 植物生理学报, 47(12): 1145-1154. (Mo J B, Li D Y, Zhang H J, et al.2011. Roles of ERF transcription factors in biotic and abiotic stress response in plants[J]. Plant Physiology Journal, 47(12): 1145-1154.) [7] 张麒, 陈静, 李俐, 等. 2018. 植物AP2/ERF转录因子家族的研究进展[J].生物技术通报, 34(8): 1-7. (Zhang L, Chen J, Li L, et al.2018. Research progress on plant AP2/ERF transcription factor family[J]. Biotechnology Bulletin, 34(8): 1-7.) [8] 张镇涛, 杨晓光, 高继卿, 等. 2018.气候变化背景下华北平原夏玉米适宜播期分析[J]. 中国农业科学, 51(17): 3258-3274. (Zhang Z T, Yang X G, Gao J Q, et al.2018.Analysis of suitable sowing date for summer maize in north China plain under climate change[J]. Scientia Agricultura Sinica, 51(17): 3258-3274.) [9] 朱长保, 徐辰峰, 刘仁梅, 等. 2019. 干旱胁迫下水稻转录因子表达变化[J]. 中国农学通报, 35(6): 108-114. (Zhu C B, Xu C F, Liu R M, et al.2019. Expression change of transcription factors of rice under drought stress[J]. Chinese Agricultural Science Bulletin, 35(6): 108-114.) [10] Avramova V, AbdElgawad H, Zhang Z F, et al.2015. Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone[J]. Plant Physiology, 169(2): 1382-1396. [11] Bowman M J, Park W, Bauer P J, et al.2013. RNA-Seq transcriptome profiling of upland cotton (Gossypium Hirsutum L.) root tissue under water-deficit stress[J]. PLOS ONE, 8(12): e82634. [12] Cai R H, Dai W, Zhang C S, et al.2017. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants[J].Planta, 246(6): 1215-1231. [13] Cai R H, Zhao Y, Wang Y F, et al.2014. Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice[J]. Plant Cell, Tissue & Organ Culture, 119(3): 565-577. [14] Chen L G, Song Y, Li S J, et al.2012. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica ET Biophysica Acta-gene Regulatory Mechanisms, 1819(2): 120-128. [15] Chen Y H, Cao Y Y, Wang L J, et al.2018. Identification of MYB transcription factor genes and their expression during abiotic stresses in maize[J]. Biologia Plantarum, 62(2): 222-230. [16] Chinnusamy V, Schumaker K, Zhu J K.2004. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants[J]. Journal of Experimental Botany, 55(395): 225-236. [17] Du H W, Huang M, Zhang Z X, et al.2014. Genome-wide analysis of the AP2/ERF gene family in maize waterlogging stress response[J]. Euphytica, 198(1): 115-126. [18] Gao Y, Wu M Q, Zhang M J, et al.2018. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty[J]. Plant Molecular Biology, 97(4-5): 311-323. [19] Grassmann F.2019. Conduct and quality control of differential gene expression analysis using high-throughput transcriptome sequencing (RNA-Seq)[J]. Methods in Molecular Biology, 1834: 29-43. [20] Guo B J, Wei Y F, Xu R B, et al.2016. Genome-wide analysis of APETALA2/Ethylene-responsive factor (AP2/ERF) gene family in barley (Hordeum vulgare L.)[J]. PLOS ONE, 11(9): 9-25. [21] Gupta S, Mishra V K, Kumari S, et al.2018. Deciphering genome-wide WRKY gene family of Triticum aestivum L. and their functional role in response to abiotic stress[J]. Gene & Genomics, 41(1): 1-16. [22] Je J, Chen H, Song C, et al.2014. Arabidopsis DREB2C modulates ABA biosynthesis during germination[J]. Biochemical and Biophysical Research Communications, 452(1): 91-98. [23] Kadier Y, Zu Y Y, Dai Q M, et al.2017. Genome-wide identification, classification and expression analysis of NAC family of genes in sorghum [Sorghum bicolor (L.) Moench][J]. Plant Growth Regulation, 83(2): 301-312. [24] Li J J, Guo X, Zhang M H, et al.2018. OsERF71 confers drought tolerance via modulating ABA signaling and proline biosynthesis[J]. Plant Science, 270: 131-139. [25] Livak K J, Schmittgen T D.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T) method[J]. Methods, 25(4): 402-408. [26] Lu M, Ying S, Zhang D F, et al.2012. A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis[J].Plant Cell Reports, 31(9): 1701-1711. [27] Lu Y B, Chi M H, Li L X, et al.2018. Genome-wide identification, expression profiling, and functional validation of oleosin gene family in Carthamus tinctorius L.[J]. Frontiers in Plant Science, 9: 1393-1404. [28] Luo Y, Yu S S, Li J, et al.2018. Molecular characterization of WRKY transcription factors that act as negative regulators of o-methylated catechin biosynthesis in tea plants (Camellia sinensis L.)[J]. Journal of Agricultural and Food Chemistry, 66(43): 11234-11243. [29] Nagalakshmi U, Wang Z, Waern K, et al.2008. The transcriptional landscape of the yeast genome defined by RNA sequencing[J]. Science, 320(5881): 1344-1349. [30] Nakashima K, Takasaki H, Mizoi J, et al.2012. NAC transcription factors in plant abiotic stress responses[J]. Biochimica ET Biophysica Acta-gene Regulatory Mechanisms, 1819(2): 97-103. [31] Nowak K, Wojcikowska B,Gaj M D.2015. ERF022 impacts the induction of somatic embryogenesis in Arabidopsis through the ethylene-related pathway[J]. Planta, 241(4): 967-985. [32] Onda Y, Mochida K.2016. Exploring genetic diversity in plants using high-throughput sequencing techniques[J].Current Grnomics, 17(4): 358-367. [33] Wang P J, Yue C, Chen D, et al.2018. Genome-wide identification of WRKY family genes and their response to abiotic stresses in tea plant (Camellia sinensis)[J]. Gene & Genomics, 41(1): 1-17. [34] Wu J, Jiang Y, Liang Y, et al.2019. Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants[J]. Plant Physiology and Biochemistry, 137: 179-188. [35] Xie T, Chen C, Li C H, et al.2018. Genome-wide investigation of WRKY gene family in pineapple evolution and expression profiles during development and stress[J]. BMC Genomics, 19: 490-508. [36] Yu Y C, Hu R B, Wang H M, et al.2013. MIWRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering[J]. Plant Science, 212: 1-9. [37] Yu Y L, Zhen S M, Wang S, et al.2016. Comparative transcriptome analysis of wheat embryo and endosperm responses to ABA and H2O2 stresses during seed germination[J]. BMC Genomics, 17: 97-104. [38] Zhang T T, Lv W, Zhang H S, et al.2018a. Genome-wide analysis of the basic Helix-Loop-Helix (bHLH) transcription factor family in maize[J]. BMC Plant Biology, 18(1): 235-248. [39] Zhang X, Zhang Y, Wang Y H, et al.2018b. Transcriptome analysis of cinnamomum chago: A revelation o candidate genes for abiotic stress response and terpenoid and fatty acid biosyntheses[J]. Frontiers in Genetics, 9: 505-518. [40] Zhao Y, Cheng X Y, Liu X D, et al.2018. The wheat MYB transcription factor TaMYB31 is involved in drought stress responses in Arabidopsis[J]. Frontiers in Plant Science, 9: 1426-1438.