Expression and Distribution of CRY1 in the Reproductive Axis of Male Yak (Bos grunniens)
CHEN Jian-Nan1, WANG Qi2, WANG Yuan-Yuan2, LV Chen2, ZHAO Cai-Ying1, ZHANG Yong1,2, MA You-Ji3, ZHANG Quan-Wei1,*, ZHAO Xing-Xu1,2,*
1 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; 2 College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; 3 College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
Abstract:Cryptochrome 1 (CRY1) gene is a member of mammalian clock genes. Its expressed protein is both a photoreceptor and a part of the circadian clock, which could be delivered to the effector via the humoral and neural pathways to regulate mammalian physiology, biochemistry and behavior. In this study, the samples (the hypothalamus, pituitary, pineal and testicular tissues) of yak were collected, and the sequence of CRY1 coding region was cloned and the expression of CRY1 in adult male yak reproductive axis and yak testes of different ages (30 d, 2, 4 and 6 years old) was analyzed by qRT-PCR (real-time fluorescent quantitative PCR), Western blot and immunohistochemical staining. The results showed that the CRY1 gene CDS was 1 712 bp in length and the ORF was 1 257 bp (GenBank No. MN460656), encoding a total of 418 amino acid residues, without transmembrane domain, and the encoded protein was a soluble protein. Tissue expression and localization revealed that CRY1 mRNA and protein were expressed in the hypothalamus, pituitary, testis and pineal tissues of yak, and the expression level in pineal tissue was significantly higher than other tissues (P<0.01). Immunohistochemical staining showed positive expression in the hypothalamic paraventricular nucleus, pituitary cells, testicular spermatogenic cells, pineal cells and glial cells. The expression of CRY1 mRNA and protein in the testis of 30 d was the lowest in the testis tissues of different age groups, and the expression level gradually increased with age. The results showed that the CRY1 gene was relatively more conservative in animal evolution and was expressed in the male yak gland axis and the yak testes of different ages, suggesting that it might play an important role in the reproductive process of yak. The above results provides the basis for the biological function of the yak biorhythm gene CRY1 and its related research on the regulation of yak reproductive physiology.
陈健楠, 王琪, 王媛媛, 吕琛, 赵彩英, 张勇, 马友记, 张全伟, 赵兴绪. CRY1在雄性牦牛生殖轴中的表达与分布[J]. 农业生物技术学报, 2019, 27(10): 1869-1877.
CHEN Jian-Nan, WANG Qi, WANG Yuan-Yuan, LV Chen, ZHAO Cai-Ying, ZHANG Yong, MA You-Ji, ZHANG Quan-Wei, ZHAO Xing-Xu. Expression and Distribution of CRY1 in the Reproductive Axis of Male Yak (Bos grunniens). 农业生物技术学报, 2019, 27(10): 1869-1877.
1 高磊, 甘尚权, 杨井泉, 等. 2013. 绵羊发情周期不同组织Cry1 mRNA转录水平相对定量研究[J].遗传, 35(1): 85-92. (Gao L, Gan S Q, Yang J Q, et al.2013. Relative quantification of mRNA transcription of Cry1 in different tissues of sheep in oestrous cycle by real-time quantitative PCR[J]. Hereditas, 35(1): 85-92.) 2 黄冬维, 储明星. 2011. 动物季节性繁殖分子调控机理研究进展[J]. 遗传, 33(7): 695-706. (Huang D W, Chu M X.2011. Research progress in molecular mechanism of animal seasonal reproduction[J]. Hereditas (Beijing), 33(7): 695-706.) 3 李冲. 2018. Cry1敲除对小鼠睾丸生殖功能的影响[D]. 硕士学位论文,重庆医科大学,导师: 黎刚, pp. 11-23. (Li C.2018. Cry1 deficiency damages mice testicular function[D]. Thesis for M.S., Chongqing Medical University, Supervisor: Li G, pp. 11-23.) 4 李春艳, 狄冉, 张子军, 等. 2018. MITF基因表达与绵羊季节性发情及产羔数关系初探[J]. 中国农业大学学报, 23(12): 91-96. (Li C Y, Di R, Zhang Z J, et al.2018. Relationship between MITF gene expression and the seasonal estrus and litter size of sheep (Ovis aries)[J]. Journal of China Agricultural University, 23(12): 91-96.) 5 李讨讨, 马友记, 赵兴绪, 等. 2018. Dazl基因在绵羊不同发育期睾丸组织中的表达与细胞定位[J]. 农业生物技术学报, 26(3): 421-428. (Li T T, Ma Y J, Zhao X X, et al.2018. Expression and cellular localization of Dazl gene in testis of sheep (Ovis aries) at different developmental stages[J]. Chinese journal of agricultural biotechnology, 26(3): 421-428.) 6 李杨. 2016. 哺乳动物隐花色素蛋白调控生物钟节律机制的研究[D]. 博士学位论文, 中国农业大学, 导师: 张二荃, pp. 20. (Li Y. 2016. Mechanism studies of mammalian cryptochromin genes in circadian rhythms[D]. Thesis for Ph.D., China Agricultural University, Supervisor: Zhang E, pp. 20.) 7 梁辉. 2011. 家蚕生物钟基因Cry的克隆和功能鉴定[D]. 硕士学位论文, 苏州大学, 导师: 徐世清; 司马杨虎, pp. 35-43. (Liang H.2011. Cloning and functional identification of cry gene from Bombyx mori[D]. Thesis for M.S., Soochow University, Supervisor: Xu S Q; Si Ma Y H, pp. 35-43.) 8 彭巍. 2013. 牦牛繁殖调控技术研究进展[J]. 青海畜牧兽医杂志, 43(6): 41-43. (Peng W.2013. Advances in research on yak breeding regulation technology[J]. Chinese Qinghai Journal of Animal and Veterinary Sciences, 43(6): 41-43.) 9 秦曦明, 郭金虎. 2017.哺乳动物生物钟同步化的研究进展[J]. 科学通报, 62(25): 2849-2856. (Qin X M, Guo J H.2017.Synchronization of the mammalians central and peripheral circadian clocks[J]. Chinese Science Bulletin, 62(25): 2849-2856.) 10 王晓明, 陈薇, 李燕, 等. 2014. 隐花色素蛋白光依赖磁感应机制研究进展[J]. 生物技术, 24(03): 95-100. (Wang X M, Chen W, Li Y, et al.2014. Research progress of cryptochromes light-dependent magnetoreception mechanism[J]. Biotechnology, 24(03): 95-100.) 11 吴鹏举, 王成章, 严学兵, 等. 2009.光受体的研究进展[J].江西农业学报, 21(10): 108-111. (Wu P J, Wang C Z, Yan X B, et al.2009. Research progress in photoreceptors[J]. Acta Agriculturae Jiangxi, 21(10): 108-111.) 12 邢陈, 顾晔, 宋伦. 2017. 昼夜节律在代谢调控中的作用[J]. 军事医学, 41(7): 618-622. (Xing C, Gu Y, Song L.2017. Function of circadian rhythms in regulation of metabolism[J]. Military Medical Sciences, 41(7): 618-622.) 13 邢陈, 宋伦. 2017. 昼夜节律在调控免疫系统功能中的作用[J]. 军事医学, 41(3): 233-236. (Xing C, Song L.2017. Effects of circadian rhythm in regulating immune function[J]. Military Medical Sciences, 41(3): 233-236.) 14 俞强. 2017. 生物钟的研究、功能和机理-2017年度诺贝尔生理学或医学奖成果简析[J]. 科技导报, 35(23): 33-38. (Yu Q.2017. Research, function and mechanism of biological clock-analysis of the results of 2017 Nobel Prize in physiology or medicine[J]. Science & Technology Review, 35(23): 33-38.) 15 占思远, 罗万伟, 程波, 等. 2012. 山羊Clock和Cry1基因的克隆及其在大脑和垂体中表达差异的研究[J]. 畜牧兽医学报, 43(11): 1716-1722. (Zhan S Y, Luo W W, Cheng B, et al.2012. Molecular cloning and differential expression of Clock and Cry1 genes in goat brain and pituitary[J]. Chinese Journal of Animal and Veterinary Sciences, 43(11): 1716-1722.) 16 堵吉, 谈勇. 2012. 松果腺褪黑素及其受体对下丘脑-垂体-性腺轴作用的研究进展[J]. 医学综述, 18(11): 1620-1623. (Du J, Tan Y.2012. The research progress of the effect of melatonin and its receptor on hypothalamic-pituitary-gonadal axis[J]. Medical Recapitulate, 18(11): 1620-1623.) 17 Ahmad M, Cashmore A R.1993. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor[J]. Nature, 366(6451): 162-166. 18 Brudler R, Hitomi K, DaiyasuH, et al.2004. Identification of a new cryptochrome class: Structure, function, and evolution[J]. Molecular Cell, 11(1): 59-67. 19 Dallmann R, Brown S A, Gachon F.2014. Chronopharmacology: New insights and therapeutic implications[J]. Annual Review of Pharmacology, 54(1): 339-361. 20 Alvarez J D.2003. Non-cyclic and developmental stage-specific expression of circadian clock proteins during murine spermatogenesis[J]. Biology of Reproduction, 69(1): 81-91. 21 Gong J, Zhang Q, Wang Q, et al.2018. Identification and verification of potential piRNAs from domesticated yak testis[J]. Reproduction, 155(2): 117-127. 22 Greives T J, Mason A O, Scotti M A L, et al.2007. Environmental control of kisspeptin: Implications for seasonal reproduction[J]. Endocrinology, 148(3): 1158-1166. 23 Kennaway D J.2003. Rhythmic expression of clock and clock-controlled genes in the rat oviduct[J]. Molecular Human Reproduction, 9(9): 503-507. 24 Lee C, Etchegaray J P, Cagampang F R A, et al.2001, Posttranslational mechanisms regulate the mammalian circadian clock[J]. Cell, 107(7): 855-867. 25 Nishiwakiohkawa T, Yoshimura T.2016. Molecular basis for regulating seasonal reproduction in vertebrates[J]. Journal of Endocrinology, 229(3): R117. 26 Peirson S N.2006. Comparison of clock gene expression in SCN, retina, heart, and liver of mice[J]. Biochemical and Biophysical Research Communications, 351(4): 800-807. 27 Ratajczak C K, Herzog E D, Muglia L J.2010. Clock gene expression in gravid uterus and extra-embryonic tissues during late gestation in the mouse[J]. Reproduction Fertility and Development, 22(5): 743-750. 28 Schibler U, Gotic I, Saini C, et al.2015. Clock-talk: Interactions between central and peripheral circadian oscillators in mammals[J]. Cold Spring Harbor Symposia on Quantitative Biology, 80: 223-232. 29 Zhang Q W,Gong J S,WangX Y, et al.2014. Molecular cloning, bioinformatics analysis and expression of insulin-like growth factor 2 from Tianzhu white yak, Bos grunniens[J]. International Journal of Molecular Sciences, 15(1):504-524. 30 Zhang E E, Liu A C, Hirota T, et al.2009. A genome-wide RNAi screen for modifiers of the circadian clock in human cells[J]. Cell, 139(1): 199-210. 31 Zhang Q W, Wang Q, Zhang Y, et al.2018. Comprehensive analysis of microRNA-messenger RNA from White Yak testis reveals the differentially expressed molecules involved in development and reproduction[J]. International Journal of Molecular Sciences, 19(10): 3083.