Abstract:Begonia semperflorens are considered as an important garden ornamental plant, with its flowers open in clusters and gorgeous colors. In order to study the mechanism of the flower color formation of B. semperflorens, in this study, the anthocyanin synthesis pathway key enzyme flavonoid glycosyltransferase gene (UDP-glycose flavonoid glycosyltransferase, UFGT), were cloned and analyzed using B. semperflorens as materials, according to the previous stage of B. semperflorens transcriptome data. Differences in the expression of BsUFGT gene in different tissues of B. semperflorens were detected by fluorescence quantitative PCR and transformed into Nicotiana tabacum 'NC89' for functional verification. The results showed that a cDNA of 1 536 bp and 511 amino acids gene sequence was successfully cloned and named BsUFGT (GenBank No. OL329828). The molecular weight was 56 385.34 D, the theoretical isoelectric point (pI) was 5.25. Domain analysis showed that the UFGT protein encoded by BsUFGT gene had a UDPGT domain. Subcellular localization results showed that BsUFGT was mainly localized in cell membrane and nucleus.The qRT-PCR analysis showed that BsUFGT expression in B. semperflorens flowers was significantly higher than that in leaves and stems (P<0.05). BsUFGT of B. semperflorens were transformed into N. tabacum 'NC89' for functional verification. The anthocyanin content of anthocyanins in transgenic tobacco corolla was higher than that in wild-type tobacco corolla. This study provides a theoretical basis for the molecular regulation mechanism of anthocyanin synthesis in B. semperflorens.
[1] 杜丽娜, 王琪, 王春兰, 等. 2019. 胭脂萝卜RsUFGTs的克隆与表达分析[J]. 华中农业大学学报, 38(04): 1-7. (Du L N, Wang Q, Wang C L, et al.2019. Cloning and expression analysis of RsUFGTs in raphanus sativus L.[J]. Journal of Huazhong Agricultural University, 38(04): 1-7.) [2] 姜丽娜, 李纪元, 范正琪, 等. 2020. 金花茶类黄酮糖基转移酶基因的克隆和功能初步研究[J]. 西北植物学报, 40(12): 1989-1999. (Jiang L N,Li J Y, Fan Z Q, et al.2020. Cloning and preliminary functional study of UDP-flavonoid glycosyltransferase genes of Camellia nitidissima Chi[J]. Acta Botanica Boreali-Occidentalia Sinica, 40(12): 1989-1999.) [3] 赖呈纯, 潘红, 黄贤贵, 等. 2019. 刺葡萄愈伤组织UFGT基因克隆及表达分析[J]. 核农学报, 33(09): 1677-1685. (Lai C C, Pan H, Huang X G, et al.2019.Cloning and expression analysis of UFGT genes in Vitis davidii[J]. Journal of Nuclear Agricultural Sciences, 33(09): 1677-1685.) [4] 林兵, 陈艺荃, 方能炎, 等. 2021. 荷兰鸢尾突变株'紫韵'的花色突变相关机理分析[J]. 西北植物学报, 41(09): 1509-1515. (Lin B, Chen Y Q,Fang N Y, et al.2021. Analysis of related genes about flower color mutation in 'Ziyun' of Iris hollandi[J]. Acta Botanica Boreali-Occidentalia Sinica, 41(09): 1509-1515.) [5] 刘红利. 2019. 蓝色花葡萄风信子关键基因DFR和FLS调控花青苷积累的功能研究[D]. 博士学位论文, 西北农林科技大学, 导师: 刘雅莉, pp.47-49. (Liu H L.2019. Characterization of DFR and FLS genes regulating of the anthocyanin accumulation in blue grape hyacinth[D].Thesis for M.S., Northwest A&F University, Supervisor:Liu Y L, pp. 47-49.) [6] 刘恺媛, 王茂良, 辛海波, 等. 2021. 植物花青素合成与调控研究进展[J]. 中国农学通报, 37(14): 41-51. (Liu K Y,Wang M L, Xin H B, et al.2021. Anthocyanin biosynthesis and regulate mechanisms in plants: A review[J]. Chinese Agricultural Science Bulletin, 37(14): 41-51.) [7] 屈莹, 谢久凤, 王珂, 等. 2018. 低温及光照对四季秋海棠叶片花色素苷合成的诱导及调控机理[J]. 河南农业大学学报, 52(03): 342-349. (Qu Y, Xie J F, Wang K, et al.2018. Induction and regulation mechanism of low temperature and light on anthocyanin biosynthesis in leaves of Begonia semperflorens[J]. Journal of Henan Agricultural University, 52(03): 342-349.) [8] 屈莹. 2020. 四季秋海棠内参基因的筛选和低温、高光下BsMYB62的表达及蛋白互作分析[D]. 硕士学位论文, 河南农业大学, 导师: 张开明, pp. 14-16. (Qu Y.2020. Selection of reference genes, expression and protein interaction analysis of BsMYB62 under low temperature and highlight in Besonia semperflorens[D]. Thesis for M.S., Henan Agriculture University, Supervisor: Zhang K M, pp. 14-16.) [9] 王鸿雪, 刘天宇, 庄维兵, 等. 2020. 花青素苷在植物逆境响应中的功能研究进展[J]. 农业生物技术学报, 28(01): 174-183. (Wang H X, Liu T Y, Zhuang W B, et al.2022. Research advances in the function of anthocyanin in plant stress response[J]. Journal of Agricultural Biotechnology, 28(01): 174-183.) [10] 王阳. 2020. 四季秋海棠花色素苷相关基因BsRbohD的克隆及功能验证[D]. 硕士学位论文, 河南农业大学, 导师: 张开明, pp. 4-6. (Wang Y.2020. Cloning and functional verification of anthocvanin related gene BsRbohD in Begonia semperflorens[D]. Thesis for M.S., Henan Agriculture University, Supervisor: Zhang K M, pp. 4-6.) [11] 吴一凡, 张睿琪, 董泽安, 等. 2021. 植物糖基转移酶的分类、分布及在果实发育中作用研究进展[J]. 食品科技, 46(07): 1-6. (Wu Y F, Zhang R Q,Dong Z A, et al.2021. Classification and distribution of glycosyltransferases in plant and its roles in the fruit development[J]. Food Science and Technology, 46(07): 1-6.) [12] 杨慧勤, 王佳丽, 李思蕤, 等. 2022. 茄科蔬菜花青素苷分子调控研究进展[J]. 生物工程学报, 38(05): 1738-1752. (Yang H Q, Wang J L, Li S M, et al.2022. The molecular regulation research progress of anthocyanins in Solanaceous vegetables[J]. Chinese Journal of Biotechnology, 38(05): 1738-1752.) [13] 赵志常, 张波, 高爱平, 等. 2016. 芒果UFGT基因的克隆及表达分析[J]. 江苏农业科学, 44(05): 31-34. (Zhao Z C, Zhang B, Gao A P, et al.2016. Cloning and expression analysis of UFGT genes in Mangifera indica[J]. Jiangsu Agricultural Sciences, 44(05): 31-34.) [14] Cong L, Qu Y, Sha G, et al.2021. PbWRKY75 promotes anthocyanin synthesis by activating PbDFR, PbUFGT, and PbMYB10b in pear[J]. Physiologia Plantarum, 173(4): 1841-1849. [15] Chen K, Liu H, Lou Q, et al.2017. Ectopic expression of the grape hyacinth (Muscari armeniacum) R2R3-MYB transcription factor gene, MaAN2, induces anthocyanin accumulation in tobacco[J]. Frontiers in Plant Science, 8: 965-965 [16] Fang Z, Lin-Wang K, Jiang C, et al.2021. Postharvest temperature and light treatments induce anthocyanin accumulation in peel of 'Akihime' plum (Prunus salicina Lindl.) via transcription factor PsMYB10. 1[J]. Postharvest Biology and Technology, 179: 111592. [17] Han M, Yang C, Zhou J, et al.2020. Analysis of flavonoids and anthocyanin biosynthesis-related genes expression reveals the mechanism of petal color fading of Malus hupehensis (Rosaceae)[J]. Brazilian Journal of Botany, 43(1): 81-89. [18] Jiang S, Chen M, He N, et al.2019. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple[J]. Horticulture Research, 6(1): 40-53. [19] Katayama-Ikegami A, Byun Z, Okada S, et al.2020. Characterization of the recombinant UDP: Flavonoid 3-O-galactosyltransferase from Mangifera indica 'Irwin' (MiUFGalT3) involved in skin coloring[J]. The Horticulture Journal, 89(5): 516-524. [20] Montefiori M, Espley R V, Stevenson D, et al.2011. Identification and characterisation of F3GT1 and F3GGT1, two glycosyltransferases responsible for anthocyanin biosynthesis in red‐fleshed kiwifruit (Actinidia chinensis)[J]. The Plant Journal, 65(1): 106-118. [21] Muhammad N, Luo Z, Yang M, et al.2022. The joint role of the late anthocyanin biosynthetic UFGT-encoding genes in the flowers and fruits coloration of horticultural plants[J]. Scientia Horticulturae, 301: 111110. [22] Peng Y, Lin-Wang K, Cooney J M, et al.2019. Differential regulation of the anthocyanin profile in purple kiwifruit (Actinidia species)[J]. Horticulture Research, 6(1): 3-18. [23] Qu S, Li M, Wang G, et al.2021. Transcriptomic, proteomic and LC-MS analyses reveal anthocyanin biosynthesis during litchi pericarp browning[J]. Scientia Horticulturae, 289: 110443. [24] Shen T, Han M, Liu Q, et al.2021. Pigment profile and gene analysis revealed the reasons of petal color difference of crabapples[J]. Brazilian Journal of Botany, 44(2): 287-296. [25] Wang J, Guo M, Li Y, et al.2017. High-throughput transcriptome sequencing reveals the role of anthocyanin metabolism in Begonia semperflorens under high light stress[J]. Photochemistry and Photobiology, 94(1): 105-114. [26] Wu X, Gong Q, Ni X, et al.2017. UFGT: The key enzyme associated with the petals variegation in Japanese apricot[J]. Frontiers in Plant Science, 8(2017): 108-121. [27] Zhang J, Liu Y, Bu Y F, et al.2017. Factor analysis of MYB gene expression and flavonoid affecting petal color in three crabapple cultivars[J]. Frontiers in Plant Science, 8: 137. [28] Zhang K M, Wang J W, Guo M L, et al.2016. Short-day signals are crucial for the induction of anthocyanin biosynthesis in Begonia semperflorens under low temperature condition.[J]. Journal of Plant Physiology, 204: 1-7. [29] Zhang Q, Wang L, Liu Z, et al.2020. Transcriptome and metabolome profiling unveil the mechanisms of Ziziphus jujuba Mill. peel coloration[J]. Food Chemistry, 312: 125903.