Abstract:Avian is a valuable animal model, and plays a significant part in agriculture and biomedicine. In recent years, newly developed programmable gene editing tools such as TALEN and CRISPR/Cas9 have been successfully adopted in avian species. These gene modification technologies are expected to be applied to practical uses, such as enhancing economic traits of poultry, investigating virus-receptor interaction, developing vector vaccines, improving poultry welfare, and producing pharmaceutical proteins and antibodies in eggs, etc. In this review, we present a concise description of the existing approaches of genome editing in bird species, and the application of CRISPR/Cas9 in advancing poultry breeding and production, as well as in poultry research. In addition, we discuss the potential use of gene-edited poultry model in various industries in the future. This review will lead to improve economic traits of poultry and control avian viral diseases by means of gene editing techniques.
[1] Agate R J, Scott B B, Haripal B, et al.2009. Transgenic songbirds offer an opportunity to develop a genetic model for vocal learning[J]. Proceedings of the National Academy of the USA, 106(42): 17963-17967. [2] Atasoy M O, Rohaim M A, Munir M.2019. Simultaneous deletion of virulence factors and insertion of antigens into the infectious laryngotracheitis virus using NHEJ-CRISPR/Cas9 and Cre-Lox system for construction of a stable vaccine vector[J]. Vaccines (Basel), 7(4): 207. [3] Brauer R, Chen P.2015. Influenza virus propagation in embryonated chicken eggs[J]. Jove-Journal of Visualized Experiments, 97: 52421. [4] Cao D, Wu H, Li Q, et al.2015. Expression of recombinant human lysozyme in egg whites of transgenic hens[J]. Plos One, 10(2): e0118626. [5] Challagulla A, Jenkins K A, O'Neil T E, et al.2020. Germline engineering of the chicken genome using CRISPR/Cas9 by in vivo transfection of PGCs[J]. Animal Biotechnology. 1-10. [6] Challagulla A, Jenkins K A, O'Neil T E, et al.2021. In vivo inhibition of marek's disease virus in transgenic chickens expressing Cas9 and gRNA against ICP4[J]. Microorganisms, 9(1): 164. [7] Chang P, Ameen F, Sealy J E, et al.2019. Application of HDR-CRISPR/Cas9 and erythrocyte binding for rapid generation of recombinant turkey herpesvirus-vectored Avian influenza virus vaccines[J]. Vaccines (Basel), 7(4): 192. [8] Collares T, Campos V F, De Leon P M, et al.2011. Transgene transmission in chickens by sperm-mediated gene transfer after seminal plasma removal and exogenous DNA treated with dimethylsulfoxide or N, N-dimethylacetamide[J]. Journal of Bioscience and Bioengineering, 36(4): 613-620. [9] Cooper C A, Challagulla A, Jenkins K A, et al.2017. Generation of gene edited birds in one generation using sperm transfection assisted gene editing (STAGE)[J]. Transgenic Research, 26(3): 331-347. [10] Cooper C A, Doran T J, Challagulla A, et al.2018. Innovative approaches to genome editing in avian species[J]. Journal of Animal Science and Biotechnology, 9: 15. [11] Carroll D.2018. Genome engineering with zinc-finger nucleases[J]. Genetics, 188(4): 773-782. [12] DeWitt M A, Corn J E, Carroll D.2017. Genome editing via delivery of Cas9 ribonucleoprotein[J]. Methods, 121: 9-15. [13] Dimitrov L, Pedersen D, Ching K H, et al.2016. Germline gene editing in chickens by efficient CRISPR-mediated homologous recombination in primordial germ cells[J]. Plos One, 11(4): e0154303. [14] Doran T J, Cooper C A, Jenkins K A, et al.2016. Advances in genetic engineering of the avian genome: "realising the promise"[J]. Transgenic Research, 25(3): 307-319. [15] Douglas C, Turner J M A.2020. Advances and challenges in genetic technologies to produce single-sex litters[J]. Plos Genetics, 16(7): e1008898. [16] Güntürkün O, Koenen C, Iovine F, et al.2018. The neuroscience of perceptual categorization in pigeons: A mechanistic hypothesis[J]. Learning & Behavior, 46(3): 229-241. [17] Harvey A J, Ivarie R.2003. Validating the hen as a bioreactor for the production of exogenous proteins in egg white[J]. Poultry Science, 82(6): 927-930. [18] Hellmich R, Sid H, Lengyel K, et al.2020. Acquiring resistance against a retroviral infection via CRISPR/Cas9 targeted genome editing in a commercial chicken line[J]. Frontiers in Geneme Editing, 2: 3. [19] Hirst C E, Major A T, Ayers K L, Brown R J, et al.2017. Sex reversal and comparative data undermine the W chromosome and support Z-linked DMRT1 as the regulator of gonadal sex differentiation in birds[J]. Endocrinology, 158(9): 2970-2987. [20] Houdebine L M.2009. Production of pharmaceutical proteins by transgenic animals[J]. Comparative Immunology Microbiology and Infectious Diseases, 32(2): 107-121. [21] Idoko-Akoh A, Taylor L, Sang H M, et al.2018. High fidelity CRISPR/Cas9 increases precise monoallelic and biallelic editing events in primordial germ cells[J]. Scientific Reports (Nature Publisher Group), 8: 1-14. [22] Ivarie R.2003. Avian transgenesis: Progress towards the promise[J]. Trends in Biotechnology, 21(1): 14-19. [23] Jung K M, Kim Y M, Kim J L, et al.2021. Efficient gene transfer into zebra finch germline-competent stem cells using an adenoviral vector system[J]. Scientific Reports, 11(1): 14746. [24] Kheimar A, Klinger R, Bertzbach L D, et al.2021. A genetically engineered commercial chicken line is resistant to highly pathogenic Avian leukosis virus subgroup [J][J]. Microorganisms, 9(5): 1066. [25] Khwatenge C N, Nahashon S N.2021. Recent advances in the application of CRISPR/Cas9 gene editing system in poultry species[J]. Frontiers in Geneme Editing, 12: 627714. [26] Kim Y M, Park J S, Kim S K, et al.2018. The transgenic chicken derived anti-CD20 monoclonal antibodies exhibits greater anti-cancer therapeutic potential with enhanced Fc effector functions[J]. Biomaterials, 167: 58-68. [27] Koslová A, Kučerová D, Reinišová M, et al.2018. Genetic resistance to Avian leukosis viruses induced by CRISPR/Cas9 editing of specific receptor genes in chicken cells[J]. Viruses, 10(11): 605. [28] Koslová A, Trefil P, Mucksová J, et al.2020. Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of Avian leukosis virus[J]. Proceedings of the National Academy of Sciences of the USA, 117(4): 2108-2112. [29] Kucerová D, Plachy J, Reinisová M, et al.2013. Nonconserved tryptophan 38 of the cell surface receptor for subgroup J Avian leukosis virus discriminates sensitive from resistant avian species[J]. Journal of Virology, 87(15): 8399-8407. [30] Lee H J, Seo M, Choi H J, et al.2021a. DMRT1 gene disruption alone induces incomplete gonad feminization in chicken[J]. The Faseb Journal, 35(9): e21876. [31] Lee H J, Yoon J W, Jung K M, et al.2019a. Targeted gene insertion into Z chromosome of chicken primordial germ cells for avian sexing model development[J]. The Faseb Journal, 33(7): 8519-8529. [32] Lee J, Kim D-H, Lee K.2020a. Muscle hyperplasia in Japanese quail by single amino acid deletion in MSTN propeptide[J]. International Journal of Molecular Sciences, 21(4): 1504. [33] Lee J, Kim D H, Brower A M, et al.2021b. Research Note: Improved feed efficiency in quail with targeted genome editing in the myostatin gene[J]. Poultry Science, 100(8): 101257. [34] Lee J, Kim D H, Lee K.2020b. Current approaches and applications in avian genome editing[J]. International Journal of Molecular Sciences, 21(11): 3937. [35] Lee J, Ma J, Lee K.2019b. Direct delivery of adenoviral CRISPR/Cas9 vector into the blastoderm for generation of targeted gene knockout in quail[J]. Proceedings of the National Academy of Sciences of the USA, 116(27): 13288-13292. [36] Lee S H, Gupta M K, Ho Y T, et al.2013. Transgenic chickens expressing human urokinase-type plasminogen activator[J]. Poultry Science, 92(9): 2396-2403. [37] Lillico S G, McGrew M J, Sherman A, et al.2005. Transgenic chickens as bioreactors for protein-based drugs[J]. Drug Discovery Today, 10(3): 191-196. [38] Lillico S G, Sherman A, McGrew M J, et al.2007. Oviduct-specific expression of two therapeutic proteins in transgenic hens[J]. Proceedings of the National Academy of Sciences of the USA, 104(6): 1771-1776. [39] Liu T, Wu H, Cao D, et al.2015. Oviduct-specific expression of human neutrophil defensin 4 in lentivirally generated transgenic chickens[J]. Plos One, 10(5): e0127922. [40] Liu Y, Xu Z, Zhang Y, et al.2020. Marek's disease virus as a CRISPR/Cas9 delivery system to defend against Avian leukosis virus infection in chickens[J]. Veterinary Microbiology, 242: 108589. [41] McGrew M J, Sherman A, Ellard F M, et al.2004. Efficient production of germline transgenic chickens using lentiviral vectors[J]. Embo Reports, 5(7): 728-733. [42] Miura K.2018. An overview of current methods to confirm protein-protein interactions[J]. Protein and Peptide Letters, 25(8): 728-733. [43] Mukae T, Okumura S, Watanobe T, et al.2020. Production of recombinant monoclonal antibodies in the egg white of gene-targeted transgenic chickens[J]. Genes (Basel), 12(1): 38. [44] Oishi I, Yoshii K, Miyahara D, et al.2016. Targeted mutagenesis in chicken using CRISPR/Cas9 system[J]. Scientific Reports, 6: 23980. [45] Oishi I, Yoshii K, Miyahara D, et al.2018. Efficient production of human interferon beta in the white of eggs from ovalbumin gene-targeted hens[J]. Scientific Reports, 8(1): 10203. [46] Panda S K, McGrew M J.2022. Genome editing of avian species: Implications for animal use and welfare[J]. Laboratory Animals, 56(1): 50-59. [47] Park J S, Lee K Y, Han J Y.2020. Precise genome editing in poultry and its application to industries[J]. Genes (Basel), 11(10): 1182. [48] Park T S, Lee H G, Moon J K, et al.2015. Deposition of bioactive human epidermal growth factor in the egg white of transgenic hens using an oviduct-specific minisynthetic promoter[J]. The Faseb Journal, 29(6): 2386-2396. [49] Park T S, Lee H J, Kim K H, et al.2014. Targeted gene knockout in chickens mediated by TALENs[J]. Proceedings of the National Academy of Sciences of the USA, 111(35): 12716-12721. [50] Park T S, Park J, Lee J H, et al.2019. Disruption of G(0)/G(1) switch gene 2 (G0S2) reduced abdominal fat deposition and altered fatty acid composition in chicken[J]. The Faseb Journal, 33(1): 1188-1198. [51] Platt Randall J, Chen S, Zhou Y, et al.2014. CRISPR-Cas9 knockin mice for genome editing and cancer modeling[J]. Cell, 159(2): 440-455. [52] Proudfoot C, Lillico S, Tait-Burkard C.2019. Genome editing for disease resistance in pigs and chickens[J]. Animal Frontiers, 9(3): 6-12. [53] Quadros R M, Miura H, Harms D W, et al.2017. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins[J]. Genome Biology,18(1): 92. [54] Rieblinger B, Sid H, Duda D, et al.2021. Cas9-expressing chickens and pigs as resources for genome editing in livestock[J]. Proceedings of the National Academy of Sciences of the USA, 118(10): e2022562118. [55] Sato Y, Poynter G, Huss D, et al.2010. Dynamic analysis of vascular morphogenesis using transgenic quail embryos[J]. Plos One, 5(9): e12674. [56] Schusser B, Collarini E J, Pedersen D, et al.2016. Expression of heavy chain-only antibodies can support B-cell development in light chain knockout chickens[J]. European Journal of Immunology, 46(9): 2137-2148. [57] Schusser B, Collarini E J, Yi H, et al.2013. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells[J]. Proceedings of the National Academy of Sciences of the USA, 110(50): 20170-20175. [58] Scott B B, Lois C.2005. Generation of tissue-specific transgenic birds with lentiviral vectors[J]. Proceedings of the National Academy of Sciences of the USA, 102(45): 16443-16447. [59] Sheridan C.2016. FDA approves 'farmaceutical' drug from transgenic chickens[J]. Nature Biotechnology, 34(2): 117-119. [60] Tang N, Zhang Y, Pedrera M, et al.2018. A simple and rapid approach to develop recombinant Avian herpesvirus vectored vaccines using CRISPR/Cas9 system[J]. Vaccine, 36(5): 716-722. [61] Tang N, Zhang Y, Pedrera M, et al.2019. Generating recombinant Avian herpesvirus vectors with CRISPR/Cas9 gene editing[J]. Jove-journal of Visualized Experiments,(143), DOI: 10.3791/58193. [62] Tang N, Zhang Y, Sadigh Y, et al.2020. Generation of a triple insert live Avian herpesvirus vectored vaccine using CRISPR/Cas9-based gene editing[J]. Vaccines (Basel), 8(1): 97. [63] Taylor L, Carlson D F, Nandi S, et al.2017. Efficient TALEN-mediated gene targeting of chicken primordial germ cells[J]. Development, 144(5): 928-934. [64] Tizard M L, Jenkins K A, Cooper C A, et al.2019. Potential benefits of gene editing for the future of poultry farming[J]. Transgenic Research, 28: 87-92. [65] Tseng Y C, Wu C Y, Liu M L, et al.2019. Egg-based influenza split virus vaccine with monoglycosylation induces cross-strain protection against influenza virus infections[J]. Proceedings of the National Academy of Sciences of the USA, 116(10): 4200-4205. [66] Vilela J, Rohaim M A, Munir M.2020. Application of CRISPR/Cas9 in understanding avian viruses and developing poultry vaccines[J]. Frontiers in Cellular and Infection Microbiology, 10: 581504. [67] Wang K, Jin Q, Ruan D, et al.2017. Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing[J]. Genome Research, 27(12): 2061-2071. [68] Woodcock M E, Idoko-Akoh A, McGrew M J.2017. Gene editing in birds takes flight[J]. Mammalian Genome, 28(7-8): 315-323. [69] Zhang Z, Niu B, Ji D, et al.2018. Silkworm genetic sexing through W chromosome-linked, targeted gene integration[J]. Proceedings of the National Academy of Sciences of the USA, 115(35): 8752-8756. [70] Zou Z, Huang K, Wei Y, et al.2017. Construction of a highly efficient CRISPR/Cas9-mediated Duck enteritis virus-based vaccine against H5N1 Avian influenza virus and Duck tembusu virus infection[J]. Scientific Reports, 7(1): 1478.