Abstract:Nicotinamide mononucleotide (NMN) has a variety of biological functions, which are useful for heart and brain diseases, senile degenerative diseases, neurodegenerative diseases, and anti-aging. The skeletal muscle treated with NMN has significantly preventive effect on the transcriptional changes related to aging, but the effect of NMN on the proliferation and differentiation of skeletal muscle is still unclear. In order to understand the effect of NMN on cell myoblast differentiation and enrich the mechanism of muscle growth and development, this study used mouse ((Mus musculus) myoblasts (C2C12) as a model, and different concentrations of NMN (0, 0.1, 1 and 2 μg/mL) was applied to 2% horse serum (HS) to induce differentiation of C2C12. The Cell Counting Kit-8 method (CCK-8 method) was used to detect the viability of C2C12 cells after NMN treatment; The cells were stained by 2 fluorescent probes, 2',7'-dichlorodi hydrofluorescein diacetate (DCFH-DA) and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazole carbocyanine iodide (JC-1), respectively, the effects of NMN on mitochondrial membrane potential and reactive oxygen species (ROS) of C2C12 cells were detected; Western blot (WB) and immunofluorescence technique were used to detect the expression of myogenin (MyoG), myogenic differentiation 1 (MyoD1) and myosin heavy chain (MYH). The results showed that 0, 0.1, 1 and 2 μg/mL NMN had no toxic effect on C2C12 cells, and a certain concentration of NMN could promote cell viability, increased mitochondrial membrane potential, and up-regulated the expression of myogenic differentiation related proteins MyoG, MyoD1 and MYH within a certain period of time. The above research results indicated that a certain concentration of NMN could promote the myogenic differentiation of C2C12 cells within a certain period of time. This research enriches the physiological role of NMN by exploring the role of NMN in cell myogenic differentiation, and provides a new reference basis for the subsequent application of NMN in the animal husbandry industry.
[1] 贺佳玮. 2015. PROLIFERIN对小鼠C2C12细胞和卫星细胞的增殖调控作用机制研究[D]. 硕士学位论文, 华中农业大学, 导师: 曹建华, pp. 1-66. (He J W.2015. Research on proliferation of mouse C2C12 and satellite cells regulated by Proliferin[D]. Thesis for M.S., Huazhong Agricultural University ,Supervisor: Cao J H, pp. 1-66.) [2] 李青, 刘武军, 郭潇佳, 等. 2021. 手性NAD类似物合成及其辅酶应用[J/OL]. 化工进展, 40(09): 1-9. (Li Q, Liu W J, Guo X Jet al.2021. Chiral NAD analogs as cofactors for biocatalysis[J/OL]. Chemical Industry and Engineering Progress, 40(09): 1-9) [3] 潘红英, 徐晓阳. 2007. 成肌细胞及其在骨骼肌研究中的应用[J]. 中国组织工程研究与临床康复, 11(10): 1892-1894, 1899. (Pan H Y, Xu X Y.2007. Myoblast and its application in skeletal muscle research[J]. Chinese Journal of Tissue Engineering Research, 11(10):1892-1894, 1899.) [4] 任丽梅, 王晓茹, 祁永浩, 等. 2021. β-烟酰胺单核苷酸功能与合成研究进展[J]. 生物资源, 43(02): 127-132. (Ren L M, Wang X R, Qi Y H, et al.2021. Research progress on function and synthesis of β-nicotinamide mononucleotide[J]. Biological Resources, 43(02): 127-132) [5] 沈中浩. 2021. miR-22靶向ELOVL6调控骨胳肌细胞脂肪酸组成及线粒体功能的研究[D]. 硕士学位论文, 浙江农林大学, 导师: 汪涵, pp. 1-75. (Shen Z H.2021. Study on the mechanism of miR-22 targeting ELOVL6 regulating fatty acid composition and mitochondrial function ofskeletal muscle cells[D]. Thesis for M.S., Zhejiang A&F University, Supervisor: Wang H, pp. 1-75.) [6] 孙莹, 宋雅芳, 胡齐. 2014. 中医“脾主肌肉”与线粒体功能的相关性探析[J]. 中医药信息, 31(04): 27-29. (Sun Y,Song Y F, Hu Q.2014. Analysis of the correlation between "spleen dominates muscle" and mitochondrial function in traditional Chinese medicine[J]. Information on Traditional Chinese Medicine, 31(04): 27-29.) [7] 汪涵. 2017. MIR-696和MIR-22调控骨骼肌细胞增殖与分化的机制研究[D]. 博士学位论文, 南京农业大学, 导师: 黄瑞华, pp. 1-165. (Wang H.2017. Mechanism of miR-696 and miR-22 in regulating skeletal muscle cell proliferation and differentiation[D]. Thesis for Ph.D., Nanjing Agricultural University, Supervisor: Huang R H, pp. 1-165.) [8] 王晓楠, 徐茜, 张励, 等. 2021. 烟酰胺单核苷酸对低血糖后葡萄糖再灌注大鼠学习记忆的影响[J]. 中国老年学杂志, 41(01): 135-138. (Wang X N, Xu Q, Zhang L, et al.2021. Effects of nicotinamide mononucleotide on learning and memory in rats after glucose reperfusion[J]. Chinese Journal of Gerontology, 41(01): 135-138.) [9] 颜杨林, 彭吾训, 张飞. 2021. DJ-1抗氧化应激作用及机制的研究进展[J/OL]. 医学综述, 27(11): 2093-2098. (Yan Y L, Peng W X, Zhang F.2021. Research progress in antioxidant stress and mechanism of DJ-1[J/OL]. Medical Recapitulate, 27(11): 2093-2098.) [10] 云青, 吴国芳, 魏欢,等. 2013. miR-143-3p促进C2C12成肌细胞分化[J]. 中国生物化学与分子生物学报, 029(006): 569-577. (Yun Q, Wu G F, Wei H, et al.2013. miR-143-3p is implicated in C2C12 myoblasts differentiation[J]. Chinese Journal of Biochemistry and Molecular Biology, 029(006): 569-577.) [11] 张颖, 蒋雨馨, 朱逸浩, 等, 2020. β-烟酰胺单核苷酸合成技术研究进展[J]. 食品科技, 45(10): 236-240. (Zhang Y, Jiang Y X, et al.2021. Advance in synthesis of β-Nicotinamide mononucleotide[J]. Food Science and Technology, 45(10): 236-240) [12] Belenky P, Racette F G, Bogan K L, et al.2007. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+[J] Cell, 129(3): 473-484. [13] Canto C, Houtkooper R H, Pirinen E, et al.2012. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity[J]. Cell Metabolism, 15(6): 838-847. [14] Cerutti R, Pirinen E, Lamperti C, et al.2014. NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease[J]. Cell Metabolism, 19(6): 1042-1049. [15] Churova M V, Shulgina N, Kuritsyn A, et al.2019. Muscle-specific gene expression and metabolic enzyme activities in Atlantic salmon Salmo salar L. fry reared under different photoperiod regimes[J]. Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology, 239(2): 110330. [16] Frederick D, Loro E, Liu L, et al.2016. Loss of NAD homeostasis leads to progressive and reversible degene ration of skeletal muscle[J]. Cell Metabolism, 24(2): 269-282. [17] Gomes A P, Price N L, Ling A J, et al.2013. Declining NAD(+) Induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging[J]. Cell. 155(7): 1624-1638. [18] Guan Y, Wang S R, Huang X Z, et al.2017. Nicotinamide mononucleotide, an NAD(+), precursor, rescues age-associated susceptibility to AKI in a sirtuin 1-dependent manner[J]. Journal of the American Society of Nephrology, 28(8): 2337-2352. [19] Houtkooper R H, Mouchiroud L, Ryu D, et al.2013. Mitonuclear protein imbalance as a conserved longevity mechanism[J]. Nature, 497(7450): 451-457. [20] Ito Y, Kayama T, Asahara H.2012. A Systems approach and skeletal myogenesis[J]. Comparative & Functional Genomics, 2012: 759407. [21] Kassar D L, Gayraud M B, Gomes D, et al.2004. Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice[J]. Nature, 431(7007): 466-471. [22] Kathryn F, Yoshida S, Stein L, et al.2016. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice[J]. Cell Metabolism, 24(6): 795-806. [23] Khan N A, Auranen M, Paetau I, et al.2014. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3[J]. EMBO Molecular Medicine, 6(6): 721-731. [24] Klein W H, Hasty P, Bradley A, et al.1993. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene[J]. Nature, 364(6437): 501-523. [25] Lee H J, Hong Y S, Jun W, et al.2015. Nicotinamide riboside ameliorates hepatic metaflammation by modulating NLRP3 inflammasome in a rodent model of Type 2 diabetes[J]. Journal of Medicinal Food, 18(11): 1207-1213. [26] Mills K, Yoshida S, Stein L, et al.2016. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice[J]. Cell Metabolism, 24(6): 795-806. [27] Mouchiroud L, Houtkooper R H, Moullan N, et al.2013. The NAD(+)/Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling[J]. Cell, 154(2): 430-441. [28] Picard M, Hepple R T, Burelle Y.2012. Mitochondrial functional specialization in glycolytic and oxidative muscle fibers: tailoring the organelle for optimal function[J]. American Journal of Physiology Cell Physiology, 302(4): 629-641. [29] Rudnicki M A, Schnegelsberg P, Stead R, et al.1994. MyoD or Myf-5 is required for the formation of skeletal muscle[J]. Cell, 75(7): 1351-1359. [30] Tarantini S, Valcarcel-Ares M N, Toth P, et al.2019. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice[J]. The FASEB Journal, 34(S1):1-13. [31] Weijer T, Phielix E, Bilet L, et al.2015. Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans[J]. Diabetes, 64: 1193-1201. [32] Yaffe A, Schwarz Y, Hacohen D, et al.1996. Inhibition of 2-5A synthetase expression by antisense RNA interferes with interferon-mediated antiviral and antiproliferative effects and induces anchorage-independent cell growth.[J]. Cell Growth Differentiation, 7(8): 969-978. [33] Zammit P S.2017. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis[J]. Seminars in Cell & Developmental Biology, 72(5): 19-32. [34] Zhang H B, Ryu D, Wu Y B, et al.2016. NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice[J]. Science, 352(6292): 1436-1443.